login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103200 a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5. 10

%I #32 Mar 12 2024 08:30:44

%S 1,2,11,19,90,153,712,1208,5609,9514,44163,74907,347698,589745,

%T 2737424,4643056,21551697,36554706,169676155,287794595,1335857546,

%U 2265802057,10517184216,17838621864,82801616185,140443172858,651895745267,1105706761003,5132364345954

%N a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.

%C The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.

%C This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - _Gerald McGarvey_, Mar 29 2005

%D K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

%H Vincenzo Librandi, <a href="/A103200/b103200.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,8,-8,-1,1).

%F Comments from _Pierre CAMI_ and _Gerald McGarvey_, Apr 20 2005: (Start)

%F Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.

%F G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)

%F a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - _Ralf Stephan_, May 18 2007

%F a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - _Harvey P. Dale_, Sep 27 2011

%p a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # _Emeric Deutsch_, Apr 13 2005

%t RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* _Harvey P. Dale_, Sep 27 2011 *)

%t CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* _T. D. Noe_, Jun 04 2012 *)

%o (Magma) I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // _Vincenzo Librandi_, Sep 28 2011

%Y Cf. A103201, A177187 (first differences).

%K nonn

%O 1,2

%A K. S. Bhanu and M. N. Deshpande, Mar 24 2005

%E More terms from _Pierre CAMI_ and _Emeric Deutsch_, Apr 13 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)