login
Numbers n such that 6*10^n + 3*R_n - 2 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
2

%I #19 Jan 17 2019 13:44:07

%S 1,2,4,7,18,19,23,24,34,41,56,64,84,149,272,755,1272,2398,2686,4800,

%T 5198,6217,8737,12388,12391,19702,42404

%N Numbers n such that 6*10^n + 3*R_n - 2 is prime, where R_n = 11...1 is the repunit (A002275) of length n.

%C Also numbers n such that (19*10^n-7)/3 is prime.

%C a(28) > 10^5. - _Robert Price_, Sep 10 2015

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/6/63331.htm#prime">Prime numbers of the form 633...331</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A101525(n) + 1.

%t Do[ If[ PrimeQ[(19*10^n - 7)/3], Print[n]], {n, 0, 10000}]

%Y Cf. A002275, A101525.

%K more,nonn

%O 1,2

%A _Robert G. Wilson v_, Jan 18 2005

%E Addition of a(24)-a(26) from Kamada data by _Robert Price_, Dec 09 2010

%E a(27) from Erik Branger May 01 2013 by _Ray Chandler_, Aug 16 2013