%I #17 Nov 16 2019 17:04:27
%S 1,5,7,13,47,295,1631,1909,6487,13085,84997,502829,517135,2428309,
%T 3605639,5077565,24062143,149450423,808182895,985222181,2978678759,
%U 6719515981,43295774645,252223018333,267326277407,1170495537221,1738366812781,1856180682775
%N List of values of 2^ceiling(log_2(3^k))  3^k for k >= 1, sorted in increasing order.
%C a(1)..a(28) verified for k < 2*10^5. For there to be other values that should be inserted into the Data would require log_2(3) to have some extremely good rational approximations, which seems extremely unlikely but hasn't been ruled out completely.  _Robert Israel_, Jan 04 2017
%e From _Robert Israel_, Jan 04 2017: (Start)
%e ceil(ilog_2(3^1) = 2 and 2^2  3^1 = 1.
%e ceil(ilog_2(3^2) = 4 and 2^4  3^2 = 7.
%e ceil(ilog_2(3^3) = 5 and 2^5  3^3 = 5.
%e ceil(ilog_2(3^4) = 7 and 2^7  3^4 = 47.
%e ceil(ilog_2(3^5) = 8 and 2^8  3^5 = 13.
%e These are the first 5 values, so the list starts 1,5,7,13,47. (End)
%p Res:= NULL:
%p for m from 1 to 2*10^5 do
%p n:= ilog2(3^m)+1;
%p x:= 2^n  3^m;
%p if x <= 10^13 then Res:= Res, x fi;
%p od:
%p sort([Res]); # _Robert Israel_, Jan 04 2017
%t Delete[Union[Flatten[Table[Table[If [ (2^n > 3^m) && Floor[2^n/3^m] < 2, Abs[2^n  3^m], 0], {m, 1, n}], {n, 1, 100}], 1]], 1]
%K nonn
%O 1,2
%A _Roger L. Bagula_, Mar 01 2005
%E a(27) and a(28), and name changed by _Robert Israel_, Jan 04 2017
