login
Initial terms of sextuplets of consecutive primes as follows: {p,p+16,p+24,p+40,p+48,p+64}. The corresponding difference-pattern is {16,8,16,8,16}.
2

%I #6 Nov 21 2013 12:48:37

%S 12454333,21228553,25131193,38589673,41426353,46254253,56564623,

%T 60498133,61151863,96691213,158497153,169760713,182960473,201513133,

%U 226086283,236031463,253806913,290686483,305472373,344550643,369110983

%N Initial terms of sextuplets of consecutive primes as follows: {p,p+16,p+24,p+40,p+48,p+64}. The corresponding difference-pattern is {16,8,16,8,16}.

%C A generalization of A022008. The generalized pattern of consecutive prime-differences is {6a+4,6b+2,6c+4,6d+2,6e+4} with a=c=e=2,b=d=1.

%t Transpose[Select[Partition[Prime[Range[20000000]],6,1],Differences[#] == {16,8,16,8,16}&]][[1]] (* _Harvey P. Dale_, Nov 08 2011 *)

%Y Cf. A001223, A022008, A052162-A052168, A052378, A067140, A067141, A102332, A102333, A102334.

%K nonn

%O 1,1

%A _Labos Elemer_, Jan 06 2005