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Introduction

Numerous geometric patterns identified in nature, art or science can be
generated from recurrent sequences, such as for example certain fractals or
Fermat’s spiral. The Fibonacci numbers defined by the recurrence

Fn+2 = Fn+1 + Fn, F0 = 1, F1 = 1, (1)

are ubiquitous in nature patterns and inspired the design of search techniques,
pseudo-random number generators, or structures with optimal properties.

Horadam Sequences

The Horadam sequence {wn}∞n=0 is a natural extension of the Fibonacci
numbers to the complex plane, defined by the recurrence

wn+2 = pwn+1 + qwn, w0 = a, w1 = b, (2)

where the parameters a, b, p and q are complex numbers. When (a, b) = (0, 1),
(p, q) = (1, 1) gives the Fibonacci, while (p, q) = (1,−1) the Lucas sequence.

Generators The roots z1 and z2 of the quadratic below are called generators.

P (x) = x2 − px− q (3)

General sequence term (z1 6= z2) The general term of the sequence {wn}∞n=0 is

wn = Azn1 +Bzn2 . (4)

The constants A and B are obtained from the initial values w0 = a,w1 = b.

Periodicity z1 = e2πip1/k1 6= z2 = e2πip2/k2 where p1, p2, k1, k2 are natural numbers.

Geometric bounds of periodic orbits Periodic orbits are located inside the annulus

{z ∈ C : | |A| − |B| | ≤ |z| ≤ |A| + |B|}. (5)

Properties of Periodic Horadam Orbits

Enumeration formulae (AB 6= 0, z1 6= z2) The function enumerating the number
of Horadam sequences {wn}∞n=0 having period k is denoted by HP (k).

HP (k) = ]{(p1, k1, p2, k2) : (p1, k1) = (p2, k2) = 1, [k1, k2] = k, k1 ≤ k2},

=
∑

[k1,k2]=k, k1<k2

ϕ(k1)ϕ(k2) +
1

2
ϕ(k) (ϕ(k)− 1) , (6)

=

[ ∑
d|k,d<k

ϕ(d)2ω(k/d) + ϕ(k)− 1

]
ϕ(k)

2
, (7)

where ϕ is Euler’s totient function and ω the number of prime divisors.
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Figure 1: Sequence orbit {wn}6n=0 given by (p1k1,
p2
k2
) (a) (11,
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6).

Also plotted: a, b (stars), z1, z2 (squares), unit circle (solid line), annulus (5) (dotted line).

Integer sequenceHP (k) gives the context for the O.E.I.S. sequence no. A102309

1, 1, 3, 5, 10, 11, 21, 22, 33, 34, 55, 46, 78, 69, 92, 92, 136, 105, . . .

Square-free formula Let m ≥ 2, p1, . . . , pm be primes and k = p1p2 . . . pm. Then

HP (k) =

[
(p1 + 1) · · · (pm + 1)− 1

]
(p1 − 1) · · · (pm − 1)

2
(8)

Asymptotic bounds The following inequalities are true

(k − 1)k

2
≥ HP (k) ≥

ϕ(k)k

2

(
ϕ(k)[2k − ϕ(k)− 1]

2
if k square-free

)
(9)

Geometric structure Let k1, k2, d ≥ 2 be natural numbers s.t. gcd(k1, k2) = d and
z1, z2 be k1-th and k2-th primitive roots, respectively. The orbit of {wn}∞n=0
is a k1k2/d-gon, representing k1 regular k2/d-gons or k2 regular k1/d-gons.

Figure 2: Periodic patterns: (a) Star Polygon; (b) Bipartite digraph; (c) Multi-symmetric.
Sequence orbit {wn}20n=0 obtained for z1 = e2πi

1
5, z2 = e2πi

1
4, (a = (1 + i)/2, b = −(1 + i)/3).

The orbit can be partitioned into (c1) four regular pentagons; (c2) five squares.

Aperiodic Horadam Orbits

Asymptotic behaviour of Horadam orbits For distinct z1 = r1e
2πix1, z2 = r1e

2πix2

(r1 ≤ r2), the following patterns emerge
I Stable if r1 = r2 = 1 (unless periodic);
I Quasi-convergent if 0 ≤ r1 < r2 = 1;
I Convergent if 0 ≤ r1 ≤ r2 < 1;
I Divergent if r2 > 1.

Figure 3: Horadam orbits: (a) Stable; (b) Quasi-convergent; (c) Convergent; (d) Divergent.

Dense Horadam orbits If r1 = r2 = 1 and the generators z1 = e2πix1 6= z2 = e2πix2

satisfy the relation x2 = x1q with x1, x2, q ∈ R \Q, then the orbit of the
Horadam sequence {wn}∞n=0 is dense in annulus U(0, | |A| − |B| |, |A|+ |B|).

A Horadam-based pseudo-random number generator

Pseudo-random number generators Key features
I Requirements: period, uniformity, correlation
I Applications: numerical algorithms, simulations
I Implementation: Recurrences, Lagged Fibonacci, Mersenne Twister

Properties of Horadam sequence arguments. If A = Reiφ1, B = Reiφ2 one has

wn = rne
iθn = Azn1 +Bzn2 = Rei[

φ1+φ2
2 +2πn(x1+x2)] (10)

The argument θn has the following properties:
I Aperiodicity: for x1, x2 irrational/uncorrelated, θn is aperiodic in [−π, π]
I Uniformity: for x1, x2 irrational/uncorrelated, θ̃n =

θn+π
2π is uniform in [0, 1]

I Autocorrelation: normalized arguments (θ̃n, θ̃n+1) are correlated (linear)

Figure 4: Dense Horadam sequence patterns obtained for (a) |A| 6= |B| and (b) |A| = |B|.
(c) Histogram of normalized angles θ̃n; (d) Correlation of arguments (θ̃n, θ̃n+1).

Monte Carlo simulations The value of π can be simulated as follows
I Take two dense Horadam sequences {w1

n} and {w2
n} (r1 = r2 = 1)

I Define 2D coordinates as (xn, yn) =

(
Arg(w1

n)+π
2π ,

Arg(w2
n)+π

2π

)
I find m - the number of points satisfying x2n + y2n ≤ 1
I determine the ratio ρ = m/N

Figure 5: Monte Carlo simulation: (a) N = 1000, ρ = 3.168; (b) N = 10000, ρ = 3.1420;
(c) Evaluation of results against Lagged Fibonacci and Mersenne Twister generators.

Conclusion and future work

The number and geometry of periodic Horadam sequences were presented.
Non-periodic patterns were used to design a pseudo-random number generator.
The results can be extended for generalized complex Horadam sequences.
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