Introduction

Numerous geometric patterns identified in nature, art or science can be generated from recurrent sequences, such as for example certain fractals or Fermat's spiral. The Fibonacci numbers defined by the recurrence

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, \quad F_{0}=1, F_{1}=1 \tag{1}
\end{equation*}
$$

are ubiquitous in nature patterns and inspired the design of search techniques, pseudo-random number generators, or structures with optimal properties.

Horadam Sequences

The Horadam sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ is a natural extension of the Fibonacci numbers to the complex plane, defined by the recurrence

$$
\begin{equation*}
w_{n+2}=p w_{n+1}+q w_{n}, \quad w_{0}=a, w_{1}=b \tag{2}
\end{equation*}
$$

where the parameters a, b, p and q are complex numbers. When $(a, b)=(0,1)$, $(p, q)=(1,1)$ gives the Fibonacci, while $(p, q)=(1,-1)$ the Lucas sequence. Generators The roots z_{1} and z_{2} of the quadratic below are called generators.

$$
\begin{equation*}
P(x)=x^{2}-p x-q \tag{3}
\end{equation*}
$$

General sequence term $\left(z_{1} \neq z_{2}\right)$ The general term of the sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ is

$$
\begin{equation*}
w_{n}=A z_{1}^{n}+B z_{2}^{n} \tag{4}
\end{equation*}
$$

The constants A and B are obtained from the initial values $w_{0}=a, w_{1}=b$. Periodicity $z_{1}=e^{2 \pi i p_{1} / k_{1}} \neq z_{2}=e^{2 \pi i p_{2} / k_{2}}$ where $p_{1}, p_{2}, k_{1}, k_{2}$ are natural numbers. Geometric bounds of periodic orbits Periodic orbits are located inside the annulus

$$
\begin{equation*}
\{z \in \mathbb{C}:||A|-|B|| \leq|z| \leq|A|+|B|\} \tag{5}
\end{equation*}
$$

Properties of Periodic Horadam Orbits

Enumeration formulae $\left(A B \neq 0, z_{1} \neq z_{2}\right)$ The function enumerating the number of Horadam sequences $\left\{w_{n}\right\}_{n=0}^{\infty}$ having period k is denoted by $H_{P}(k)$.

$$
\begin{align*}
H_{P}(k) & =\sharp\left\{\left(p_{1}, k_{1}, p_{2}, k_{2}\right):\left(p_{1}, k_{1}\right)=\left(p_{2}, k_{2}\right)=1,\left[k_{1}, k_{2}\right]=k, k_{1} \leq k_{2}\right\} \\
& =\sum_{\left[k_{1}, k_{2}\right]=k, k_{1}<k_{2}} \varphi\left(k_{1}\right) \varphi\left(k_{2}\right)+\frac{1}{2} \varphi(k)(\varphi(k)-1) \tag{6}\\
& =\left[\sum_{d \mid k, d<k} \varphi(d) 2^{\omega(k / d)}+\varphi(k)-1\right] \frac{\varphi(k)}{2} \tag{7}
\end{align*}
$$

where φ is Euler's totient function and ω the number of prime divisors. Example The following pairs $\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right)$ produce all orbits of period $k=6$
$\left\{\left(\frac{1}{1}, \frac{1}{6}\right),\left(\frac{1}{1}, \frac{5}{6}\right),\left(\frac{1}{2}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{2}{3}\right),\left(\frac{1}{2}, \frac{1}{6}\right),\left(\frac{1}{2}, \frac{5}{6}\right),\left(\frac{1}{3}, \frac{1}{6}\right),\left(\frac{1}{3}, \frac{5}{6}\right),\left(\frac{2}{3}, \frac{1}{6}\right),\left(\frac{2}{3}, \frac{5}{6}\right),\left(\frac{1}{6}, \frac{5}{6}\right)\right\}$

Figure 1: Sequence orbit $\left\{w_{n}\right\}_{n=0}^{6}$ given by $\left(\frac{p_{1}}{k_{1}}, \frac{p_{2}}{k_{2}}\right)$ (a) $\left(\frac{1}{1}, \frac{1}{6}\right) ;(b)\left(\frac{1}{2}, \frac{1}{3}\right) ;(c)\left(\frac{1}{3}, \frac{5}{6}\right) ;(d)\left(\frac{2}{3}, \frac{1}{6}\right)$. Also plotted: a, b (stars), z_{1}, z_{2} (squares), unit circle (solid line), annulus (5) (dotted line).

Integer sequence $H_{P}(k)$ gives the context for the O.E.I.S. sequence no. A102309 $1,1,3,5,10,11,21,22,33,34,55,46,78,69,92,92,136,105$,
Square-free formula Let $m \geq 2, p_{1}, \ldots, p_{m}$ be primes and $k=p_{1} p_{2} \ldots p_{m}$. Then

$$
\begin{equation*}
H_{P}(k)=\left[\left(p_{1}+1\right) \cdots\left(p_{m}+1\right)-1\right] \frac{\left(p_{1}-1\right) \cdots\left(p_{m}-1\right)}{2} \tag{8}
\end{equation*}
$$

Asymptotic bounds The following inequalities are true

$$
\begin{equation*}
\frac{(k-1) k}{2} \geq H_{P}(k) \geq \frac{\varphi(k) k}{2}\left(\frac{\varphi(k)[2 k-\varphi(k)-1]}{2} \text { if } k \text { square-free }\right) \tag{9}
\end{equation*}
$$

Geometric structure Let $k_{1}, k_{2}, d \geq 2$ be natural numbers s.t. $\operatorname{gcd}\left(k_{1}, k_{2}\right)=d$ and z_{1}, z_{2} be k_{1}-th and k_{2}-th primitive roots, respectively. The orbit of $\left\{w_{n}\right\}_{n=0}^{\infty}$ is a $k_{1} k_{2} / d$-gon, representing k_{1} regular k_{2} / d-gons or k_{2} regular k_{1} / d-gons.

Figure 2: Periodic patterns: (a) Star Polygon; (b) Bipartite digraph; (c) Multi-symmetric. Sequence orbit $\left\{w_{n}\right\}_{n=0}^{20}$ obtained for $z_{1}=e^{2 \pi i \frac{1}{5}}, z_{2}=e^{2 \pi i \frac{1}{4}},(a=(1+i) / 2, b=-(1+i) / 3)$. The orbit can be partitioned into (c1) four regular pentagons; $(c 2$) five squares.

Aperiodic Horadam Orbits

Asymptotic behaviour of Horadam orbits For distinct $z_{1}=r_{1} e^{2 \pi i x_{1}}, z_{2}=r_{1} e^{2 \pi i x_{2}}$ ($r_{1} \leq r_{2}$), the following patterns emerge

- Stable if $r_{1}=r_{2}=1$ (unless periodic);
- Quasi-convergent if $0 \leq r_{1}<r_{2}=1$;
- Convergent if $0 \leq r_{1} \leq r_{2}<1$;
- Divergent if $r_{2}>1$.

Figure 3: Horadam orbits: (a) Stable; (b) Quasi-convergent; (c) Convergent; (d) Divergent.
Dense Horadam orbits If $r_{1}=r_{2}=1$ and the generators $z_{1}=e^{2 \pi i x_{1}} \neq z_{2}=e^{2 \pi i x_{2}}$ satisfy the relation $x_{2}=x_{1} q$ with $x_{1}, x_{2}, q \in \mathbb{R} \backslash \mathbb{Q}$, then the orbit of the Horadam sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ is dense in annulus $U(0,||A|-|B||,|A|+|B|)$.

A Horadam-based pseudo-random number generator

Pseudo-random number generators Key features

- Requirements: period, uniformity, correlation
- Applications: numerical algorithms, simulations
- Implementation: Recurrences, Lagged Fibonacci, Mersenne Twister

Properties of Horadam sequence arguments. If $A=R e^{i \phi_{1}}, B=R e^{i \phi_{2}}$ one has

$$
\begin{equation*}
w_{n}=r_{n} e^{i \theta_{n}}=A z_{1}^{n}+B z_{2}^{n}=R e^{i\left[\frac{\phi_{1}+\phi_{2}}{2}+2 \pi n\left(x_{1}+x_{2}\right)\right]} \tag{10}
\end{equation*}
$$

The argument θ_{n} has the following properties:

- Aperiodicity: for x_{1}, x_{2} irrational/uncorrelated, θ_{n} is aperiodic in $[-\pi, \pi]$
- Uniformity: for x_{1}, x_{2} irrational/uncorrelated, $\tilde{\theta}_{n}=\frac{\theta_{n}+\pi}{2 \pi}$ is uniform in $[0,1]$
- Autocorrelation: normalized arguments ($\tilde{\theta}_{n}, \tilde{\theta}_{n+1}$) are correlated (linear)

Figure 4: Dense Horadam sequence patterns obtained for (a) $|A| \neq|B|$ and (b) $|A|=|B|$. (c) Histogram of normalized angles θ_{n}; (d) Correlation of arguments ($\hat{\theta}_{n}, \tilde{\theta}_{n+1}$).

Monte Carlo simulations The value of π can be simulated as follows

- Take two dense Horadam sequences $\left\{w_{n}^{1}\right\}$ and $\left\{w_{n}^{2}\right\}\left(r_{1}=r_{2}=1\right)$
- Define $2 D$ coordinates as $\left(x_{n}, y_{n}\right)=\left(\frac{\operatorname{Arg}\left(w_{n}^{1}\right)+\pi}{2 \pi}, \frac{\operatorname{Arg}\left(w_{n}^{2}\right)+\pi}{2 \pi}\right)$
- find m - the number of points satisfying $x_{n}^{2}+y_{n}^{2} \leq 1$
- determine the ratio $\rho=m / N$

Figure 5: Monte Carlo simulation: (a) $N=1000, \rho=3.168$; (b) $N=10000, \rho=3.1420$; (c) Evaluation of results against Lagged Fibonacci and Mersenne Twister generators.

Conclusion and future work

The number and geometry of periodic Horadam sequences were presented. Non-periodic patterns were used to design a pseudo-random number generator. The results can be extended for generalized complex Horadam sequences.

References

O. Bagdasar and P. J. Larcombe, On the characterization of periodic complex Horadam sequences, Fibonacci Quart. 51 (1), 28-37 (2013)
 Bagdasar, P. J. Larcombe and A. Anjum, Geometric Patterns of Periodic Complex Horadam Sequences, submitted to FQ (2014). [4] O. Bagdasar, An atlas of Horadam Patterns (in preparation).
[5] O. Bagdasar and M. Chen, A Horadam-based Pseudo-random Number Generator, Proceedings of 16th UKSim, Cambridge, $226-230$ (2014).

