login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating addition and subtraction of the residues of the primes less than the number.
2

%I #12 Jun 03 2017 17:25:22

%S 0,0,0,1,-1,-1,1,2,0,3,-4,-4,-2,-1,4,2,0,0,2,3,-4,6,-7,-7,-5,-9,3,7,

%T 13,14,10,10,9,2,-16,-13,-11,-10,7,23,16,16,25,26,13,11,-14,-14,-12,

%U -4,-10,-23,-11,-10,-9,-25,-20,2,29,29,26,27,-6,4,2,10,0,0,-18,-37,-36,-35,-34,-34,2,1,19,16,31,32,25,28,-15,-15,-6,-27,15

%N Alternating addition and subtraction of the residues of the primes less than the number.

%C The amplitude and periodicity of fluctuations increase... for example a(813) through a(836) are all positive and a(914) through a(937) all are positive except for a(922).

%H Alois P. Heinz, <a href="/A101336/b101336.txt">Table of n, a(n) for n = 0..10000</a>

%e a(10) = -4 because 10 (mod 2) - 10 (mod 3) + 10 (mod 5) - 10 (mod 7) = 0-1+0-3.

%p a:= n-> add(-irem(n, ithprime(i))*(-1)^i, i=1..numtheory[pi](n)):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jul 27 2015

%t Table[Total[Times@@@Partition[Riffle[Mod[n,Prime[Range[PrimePi[n]]]],{1,-1},{2,-1,2}],2]],{n,0,90}] (* _Harvey P. Dale_, Jun 03 2017 *)

%Y Cf. A024934.

%K easy,sign,look

%O 0,8

%A _Gordon Hamilton_, Dec 24 2004

%E a(0)=0 prepended by _Alois P. Heinz_, Jul 27 2015