%I
%S 3,41,59,66,102,151,165,167,233,239,255,354,357,359,367,402,406,409,
%T 421,426,429,609,638,782,786,797,826,854,885,887,890,894,897,907,911,
%U 1015,1019,1221,1259,1281,1283,1298,1301,1303,1307,1319,1327,1493,1526,1533
%N Numbers for which the values of the Moebius function (A008683) and the Mertens function (A002321) are both 1.
%C This sequence is a subsequence of A100306, Numbers for which the values of the Moebius function and the Mertens function agree.
%H Donovan Johnson, <a href="/A100765/b100765.txt">Table of n, a(n) for n = 1..10000</a>
%H PrimeFan, <a href="http://primefan.tripod.com/EsotericIntegerSequences.html">Esoteric Integer Sequences</a>
%e 102 is in the sequence because it is a sphenic (exactly 3 distinct prime factors, A007304) number, so the Mobius function yields 1 and the sum of that value and the previous Mobius values (the Mertens function) is also 1.
%t (* If not already defined *) If[Names["Mertens"] == {}, Mertens[x_] := Plus @@ MoebiusMu[Range[1, x]]]; Select[Range[2500], MoebiusMu[ # ] == 1 && Mertens[ # ] == 1 &]
%Y Cf. A100306, A100766, A100767.
%K nonn,changed
%O 1,1
%A _Alonso del Arte_, Jan 03 2005
%E Offset corrected by _Donovan Johnson_, Jun 19 2012
