%I
%S 8,10,14,16,20,22,24,26,28,32,34,36,38,40,44,46,48,50,52,54,56,58,62,
%T 64,66,68,70,74,76,78,80,82,84,86,88,90,92,94,96,98,100,104,106,110,
%U 112,114,116,118,120,122,124,126,128,130,132,134,136,140,142,144,146,148
%N Even numbers m such that at least one of m1 and m+1 is composite.
%C Subsequence of A100318. For each k >= 0, a(k+1) = a(k) + 2 unless a(k) + 1 and a(k) + 3 are twin primes, in which case a(k+1) = a(k) + 4 (as a(k)  1 and a(k) + 5 are divisible by 3).
%C The even nonisolated primes(n+1).  _JuriStepan Gerasimov_, Nov 09 2009
%H G. C. Greubel, <a href="/A100319/b100319.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A167692(n+1).  _JuriStepan Gerasimov_, Nov 09 2009
%t Select[2*Range[100], CompositeQ[#1]  CompositeQ[#+1] &] (* _G. C. Greubel_, Mar 09 2019 *)
%o (PARI) forstep(n=4,300,2,if(isprime(n1)+isprime(n+1)<=1,print1(n,",")))
%o (Sage) [n for n in (3..250) if mod(n,2)==0 and (is_prime(n1) + is_prime(n+1)) < 2] # _G. C. Greubel_, Mar 09 2019
%Y Cf. A100318 (supersequence containing odd and even n), A045718 (n such that at least one of n1 and n+1 is prime).
%Y Cf. A167692(the even nonisolated nonprimes).  _JuriStepan Gerasimov_, Nov 09 2009
%Y Cf. A005818, A038179, A007310, A038511, A025584.
%Y Complement of A014574 (average of twin prime pairs) w.r.t. A005843 (even numbers), except for missing term 2.
%K nonn
%O 1,1
%A _Rick L. Shepherd_, Nov 13 2004
