login
Molien series for complete weight enumerators of trace-additive Hermitian self-dual codes over the Galois ring GR(4,2).
0

%I #9 Apr 13 2022 09:56:02

%S 1,7,46,237,1056,4071,13986,43461,124146,329681,822074,1939691,

%T 4359264,9381561,19422294,38828715,75208515,141537930,259444020,

%U 464210670,812292096,1392398634,2341628076,3868602654,6286255716,10057721934,15859890444,24670480954

%N Molien series for complete weight enumerators of trace-additive Hermitian self-dual codes over the Galois ring GR(4,2).

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%F G.f.: u1/u2 where u1 := 1 + 9*t^2 + 27*t^3 + 27*t^4 + 27*t^5 + 27*t^6 + 9*t^7 + t^9, u2 := (1-t)^7*(1-t^2)^9.

%t CoefficientList[Series[(1+9x^2+27x^3+27x^4+27x^5+27x^6+9x^7+x^9)/((1-x)^7 (1-x^2)^9),{x,0,30}],x] (* _Harvey P. Dale_, Apr 13 2022 *)

%K nonn

%O 0,2

%A G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10, 2004