%I
%S 12,60,120,240,420,720,840,840,1680,1680,2520,2520,4620,5040,5040,
%T 5040,9240,9240,9240,9240,18480,18480,18480,18480,18480,27720,27720,
%U 27720,27720,27720,27720,55440,55440,55440,55440,55440,55440,55440,55440
%N Smallest perimeter S such that at least n distinct Pythagorean triangles with this perimeter can be constructed.
%H Ray Chandler, <a href="/A099829/b099829.txt">Table of n, a(n) for n = 1..279</a>
%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple.</a>
%H <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples.</a>
%e a(3)=120 because 120 is the smallest possible perimeter for which 3 different Pythgorean triangles exist: 120=20+48+52=24+45+51=30+40+50.
%Y Cf. A099830 first perimeter with exact match of number of Pythagorean triangles, A009096 ordered perimeters of Pythagorean triangles.
%K nonn
%O 1,1
%A _Hugo Pfoertner_, Oct 27 2004
%E More terms from _Ray Chandler_, Oct 29 2004
