Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Jul 11 2023 08:17:11
%S 1,3,3,5,5,10,16,25,25,28,29,34,43,48,57,61,63,71,76,79,88,97,104,107,
%T 115,116,122,123,128,129,130,134,138,147,156,165,165,172,178,182,191,
%U 199,205,207,216,218,221,225,225,229,238,246,254,262,263,270,279,281
%N Sum of the first n digits of Zeta(3) (Apery's constant), including the initial 1.
%H Harvey P. Dale, <a href="/A099536/b099536.txt">Table of n, a(n) for n = 1..1000</a>
%e Zeta(3)=1.20205690... so sequence begins 1, 1+2, 1+2+0, 1+2+0+2, 1+2+0+2+0,
%e 1+2+0+2+0+5,... which gives 1, 3, 3, 5, 5, 10, ...
%t Accumulate[RealDigits[Zeta[3],10,120][[1]]] (* _Harvey P. Dale_, Jan 18 2012 *)
%Y Analogous sequences for other constants: A096535 (log 2), A099534 and A046975 (e), A039918 and A046974 (Pi).
%Y Apéry's number or Apéry's constant zeta(3) is A002117. - _N. J. A. Sloane_, Jul 11 2023
%K base,easy,nonn
%O 1,2
%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004