login
Expansion of x^2*(2*x^11+2*x^9+2*x^8+x^7+2*x^6+x^5+x^4+x^3-x^2-x-1) / (x^9+x^6+2*x^3-1).
3

%I #19 Apr 06 2018 11:44:51

%S 0,1,1,1,1,1,1,1,2,1,2,6,2,6,15,6,15,38,15,38,97,38,97,247,97,247,629,

%T 247,629,1602,629,1602,4080,1602,4080,10391,4080,10391,26464,10391,

%U 26464,67399,26464,67399,171653,67399,171653,437169,171653,437169

%N Expansion of x^2*(2*x^11+2*x^9+2*x^8+x^7+2*x^6+x^5+x^4+x^3-x^2-x-1) / (x^9+x^6+2*x^3-1).

%C Variant of three copies of A109545. - _R. J. Mathar_, Jul 10 2012

%H Stewart R. Hinsley, <a href="http://www.meden.demon.co.uk/Fractals/cubic8.html">A Tile Associated with the 8th Unit Cubic Pisot Number</a> [Broken link?]

%H Richard Kenyon, <a href="http://arXiv.org/abs/math.MG/9505210">The Construction of Self-Similar Tilings</a>, arXiv:math.MG/9505210

%t CoefficientList[Series[x^2*(2*x^11 + 2*x^9 + 2*x^8 + x^7 + 2*x^6 + x^5 + x^4 + x^3 - x^2 - x - 1)/(x^9 + x^6 + 2*x^3 - 1), {x, 0, 100}], x]

%K nonn,easy

%O 1,9

%A _Roger L. Bagula_, Mar 19 2005

%E Better name from _Colin Barker_, Dec 26 2012