login
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2}.
12

%I #15 Jan 17 2020 23:02:00

%S 1,3,21,220,3060,53130,1107568,26978328,752538150,23667689815,

%T 828931106355,32006008361808,1350990969850340,61902409203193230,

%U 3060335715568296000,162392216278033616560,9206887338937200407418

%N Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2}.

%C This is the number of possible votes of n referees judging n dancers by a mark between 0 and 2, where the referees cannot be distinguished.

%C a(n) is the number of n element multisets of n element multisets of a 3-set. - _Andrew Howroyd_, Jan 17 2020

%H Andrew Howroyd, <a href="/A099121/b099121.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = binomial( (n+1)*(n+2)/2 + n-1, n).

%F a(n) = binomial(binomial(n + 2, n) + n - 1, n). - _Andrew Howroyd_, Jan 17 2020

%o (PARI) a(n)={binomial(binomial(n + 2, n) + n - 1, n)} \\ _Andrew Howroyd_, Jan 17 2020

%Y Column k=2 of A107862 and A331436.

%Y Cf. A099122, A099123, A099124, A099125, A099126, A099127, A099128.

%K nonn

%O 0,2

%A _Sascha Kurz_, Sep 28 2004

%E a(0)=1 prepended by _Andrew Howroyd_, Jan 17 2020