login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098620 Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges. 13

%I

%S 1,1,4,26,257,3586,66207,1540693,43659615,1469677309,57681784820,

%T 2601121752854,133170904684965,7664254746784243,491679121677763607,

%U 34905596059311761907,2725010800987216480527,232643959843709167832482,21613761720729431904201734

%N Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.

%D G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

%H Andrew Howroyd, <a href="/A098620/b098620.txt">Table of n, a(n) for n = 0..200</a>

%H G. Labelle, <a href="https://doi.org/10.1016/S0012-365X(99)00265-4">Counting enriched multigraphs according to the number of their edges (or arcs)</a>, Discrete Math., 217 (2000), 237-248.

%H G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]

%F E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000110. - _Andrew Howroyd_, Jan 12 2021

%o (PARI) \\ here R(n) is A000110 as e.g.f.

%o egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}

%o EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}

%o R(n)={exp(exp(x + O(x*x^n))-1)}

%o EnrichedGnSeq(R(20)) \\ _Andrew Howroyd_, Jan 12 2021

%Y Cf. A000110, A014500, A098621, A098622, A098623.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Oct 26 2004

%E Terms a(12) and beyond from _Andrew Howroyd_, Jan 12 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 13:20 EDT 2021. Contains 343884 sequences. (Running on oeis4.)