%I #8 Sep 08 2022 08:45:15
%S 1,1,1,1,7,25,61,121,283,841,2521,6769,17119,44665,123685,347497,
%T 954787,2578297,7001617,19307089,53601175,148305817,408681997,
%U 1127558041,3124344427,8681565865,24127128841,67020060721,186282015823
%N Expansion of 1/((1-x)^3 - 18*x^4)^(1/3).
%C Binomial transform of A098537.
%H G. C. Greubel, <a href="/A098538/b098538.txt">Table of n, a(n) for n = 0..1000</a>
%t CoefficientList[Series[1/((1-x)^3-18*x^4)^(1/3), {x,0,50}], x] (* _G. C. Greubel_, Jan 17 2018 *)
%o (PARI) x='x+O('x^30); Vec(1/((1-x)^3-18*x^4)^(1/3)) \\ _G. C. Greubel_, Jan 17 2018
%o (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q,30); Coefficients(R!(1/((1-x)^3-18*x^4)^(1/3))); // _G. C. Greubel_, Jan 17 2018
%Y Cf. A098536.
%K easy,nonn
%O 0,5
%A _Paul Barry_, Sep 13 2004