%I
%S 1,8,8,27,64,27,64,216,216,64,125,512,729,512,125,216,1000,1728,1728,
%T 1000,216,343,1728,3375,4096,3375,1728,343,512,2744,5832,8000,8000,
%U 5832,2744,512,729,4096,9261,13824,15625,13824,9261,4096,729,1000,5832,13824
%N Multiplication table of the cube numbers read by antidiagonals.
%H Robert Israel, <a href="/A098360/b098360.txt">Table of n, a(n) for n = 1..10011</a> (first 141 antidiagonals, flattened)
%F G.f. as rectangular array: [xy(1+4x+x^2)(1+4y+y^2)] / [(1x)^4 * (1y)^4 ].  _Ralf Stephan_, Oct 27 2004, corrected by _Robert Israel_, Jun 27 2018
%F a(n) = A003991(n)^3. _Robert Israel_, Jun 27 2018
%e 1; 8,8; 27,64,27; 64,216,216,64; ...
%p seq(seq(i^3*(mi)^3,i=1..m1),m=2..10); # _Robert Israel_, Jun 27 2018
%t With[{s = Range[10]^3}, Table[s[[#]] s[[j]] &[i  j + 1], {i, Length@s}, {j, i}]] // Flatten (* _Michael De Vlieger_, Jun 27 2018 *)
%o (GAP) Flat(List([2..11],m>List([1..m1],i>i^3*(mi)^3))); # _Muniru A Asiru_, Jun 27 2018
%Y Cf. A003991, A098358, A098359, A098361.
%Y Row sums: A145216.  _N. J. A. Sloane_, May 31 2009
%K nonn,tabl
%O 1,2
%A Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
%E More terms from _Ralf Stephan_, Oct 27 2004
%E Offset corrected by _Robert Israel_, Jun 27 2018
