%I #22 Jan 30 2020 21:29:15
%S 1,3,5,-9,-111,-477,-1051,1095,21793,106947,276165,-71145,-4712655,
%T -26071965,-76452315,-29748249,1045547073,6564746115,21507513221,
%U 19922192439,-230801512751,-1674387214173,-6072718662555
%N Expansion of 1/sqrt(1 - 6x + 17x^2).
%C Binomial transform of A098336. Second binomial transform of A098332.
%C Central coefficients of (1 + 3x - 2x^2)^n.
%H Michael De Vlieger, <a href="/A098339/b098339.txt">Table of n, a(n) for n = 0..1628</a>
%H Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%F E.g.f.: exp(3x)*BesselI(0, 2*sqrt(-2)*x).
%F D-finite with recurrence: n*a(n) + 3*(1-2*n)*a(n-1) + 17*(n-1)*a(n-2) = 0. - _R. J. Mathar_, Nov 09 2012
%t CoefficientList[Series[1/Sqrt[1-6x+17x^2],{x,0,30}],x] (* _Harvey P. Dale_, Jun 19 2013 *)
%K easy,sign
%O 0,2
%A _Paul Barry_, Sep 03 2004