The OEIS is supported by the many generous donors to the OEIS Foundation.

Irrational rotation of Log(3)/Log(2) as an implicit sequence with an uneven Cantor cartoon.

0

`%I #6 Mar 30 2012 17:34:14
`

`%S 5,10,17,22,29,34,41,46,51,58,63,70,75,82,87,94,99,104,111,116,123,
`

`%T 128,135,140,147,152,157,164,169,176,181,188,193,200,205,210,217,222,
`

`%U 229,234,241,246,253,258,263,270,275,282,287,294,299,306,311,316,323,328
`

`%N Irrational rotation of Log(3)/Log(2) as an implicit sequence with an uneven Cantor cartoon.
`

`%F f(n)=n*(Log[3]/Log[2]) (mod 1), g(x)=-1 if 0<=x<=1/3, g(x)=0 if 1/3<x<=2/3 & g(x)=1 if 1/3<x<=1, a(n)=n If f[n+2]-2*f[n+1]+f[n]-g[f[n+1]]=0.
`

`%t f[n_] := Mod[n*(Log[3]/Log[2]), 1]; g[x_] := -1/; 0<=x<=1/3; g[x_] := 0/; 1/3<x<=2/3; g[x_] := 1/; 1/3<x<=1; a = Delete[ Union[ Table[ If [Simplify[f[n+2] - 2*f[n+1] + f[n]]-g[f[n+1]]==0, n, 0], {n, 330}]], 1]; ListPlot[a, PlotJoined-> True]
`

`%K nonn
`

`%O 1,1
`

`%A _Roger L. Bagula_, Sep 09 2004
`

`%E Edited and extended by _Robert G. Wilson v_, Sep 25 2004
`