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Abstract. We show that the number gn of labelled series-parallel graphs on
n vertices is asymptotically gn ∼ g · n−5/2γnn!, where γ and g are explicit
computable constants. We show that the number of edges in random series-
parallel graphs is asymptotically normal with linear mean and variance, and
that the number of edges is sharply concentrated around its expected value.
Similar results are proved for labelled outerplanar graphs.

A graph is series-parallel (SP for short) if it does not contain the complete graph
K4 as a minor; equivalently, if it does not contain a subdivision of K4. Since
both K5 and K3,3 contain a subdivision of K4, by Kuratowski’s theorem a SP
graph is planar. Another characterization, justifying the name, is the following.
A connected graph is SP if it can be obtained from a single edge by means of the
the following two operations: subdividing an edge (series); and duplicating an edge
(parallel). In addition, a 2-connected graph is SP if it can be obtained from a double
edge by means of series and parallel operations; in particular, this implies that a
2-connected SP graph has always a vertex of degree two. Although SP operations
may give rise to multiple edges, in this paper all graphs considered are simple.

Yet another characterization is that SP graphs are precisely the graphs with
treewidth at most two. Equivalently they are subgraphs of 2-trees, where a 2-tree
is a graph formed by, starting from a triangle, adding repeatedly a new vertex and
joining it to an existing edge.

An outerplanar graph is a planar graph that can be embedded in the plane so
that all vertices are in the outer face. They are characterized as those graphs not
containing a minor isomorphic to (or a subdivision of) either K4 or K2,3. They
constitute an important subclass of the class of SP graphs.

Series-parallel graphs have been widely studied in graph theory and computer
science. They are simple in structure but yet rich enough so that several theoretical
and computational problems are still unsolved on SP graphs. In fact, they are often
used as a benchmark for analyzing the complexity of graph problems. The same
thing can be said, maybe even more, about outerplanar graphs.

In this paper we study the enumeration of labelled series-parallel and outerplanar
graphs. From now on, unless stated otherwise, all graphs are labelled. Next we
summarize what is known about this problem. An SP graph on n vertices has
at most 2n − 3 edges. Those having this number of edges are precisely the 2-
trees; it is known that the number of labelled 2-trees on n vertices is equal to
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)
(2n − 3)n−4. On the other hand, an outerplanar graph is 2-connected if and

only it has a unique Hamilton cycle. It follows that a 2-connected outerplanar
graph is in fact equivalent to a dissection of a convex polygon, the boundary of the
polygon being the unique Hamilton cycle. Hence counting 2-connected outerplanar
graphs amounts essentially to counting dissections of a convex polygon, a classical
and well-known problem. It is also worth mentioning that an outerplanar map (a
map is a planar graph together with a particular embedding in the plane) on n
vertices can be encoded with 3n bits [2]; hence the number of outerplanar graphs
is at most 23n = 8n.

The main goal of this paper is to give precise asymptotic estimates for the number
of SP and outerplanar graphs.

Theorem 1. Let bn, cn and gn be, respectively, the number of 2-connected, con-
nected and arbitrary labelled SP graphs on n vertices. Then we have the following
the asymptotic estimates:

bn ∼ b · n−5/2R−nn!,
cn ∼ c · n−5/2ρ−nn!,
gn ∼ g · n−5/2ρ−nn!,

where b, c, g and R, ρ are computable constants. In particular, R ≈ 0.128003 and
ρ ≈ 0.110213.

Our second result has to do with the number of edges in random series-parallel
graphs.

Theorem 2. Let Xn denote the number of edges in random series-parallel graphs.
Then Xn is asymptotically normal and the mean µn and variance σ2

n of Xn satisfy

µn ∼ κn, σ2
n ∼ λn,

where κ ≈ 1.616734 and λ ≈. As a consequence, the number of edges is sharply
concentrated around its expected value.

For the class of outerplanar graphs we obtain similar results, that we summarize
in the next theorem.

Theorem 3. The number hn of labelled outerplanar graphs on n vertices satisfies
the estimate

hn ∼ h · n−3/2σ−nn!,
where σ ≈ 0.136593. Moreover, the distribution of the number of edges in a random
outerplanar graph with n vertices is asymptotically normal with mean and variance

µn ∼ ζn, σ2
n ∼ ηn,

where ζ ≈ 1.56251 and η ≈ 0.223992.

We remark that the best result known so far with respect to the previous theorem
was ζ ≥ 7/5, proved in [6].

Our last result has to do with the number of connected components.

Theorem 4. The distribution of the number of connected components in random
series-parallel graphs is asymptotically a shifted Poisson law 1 + P (ν) with param-
eter equal to ν =. The same result holds for outerplanar graphs, in this case the
parameter of the Poisson law being equal to ξ =. As a consequence the probability
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that a random SP graph is connected tends to e−ν =, and to e−ξ = for outerplanar
graphs.

The proofs of the previous results are based on singularity analysis of generating
functions (see [4, 5]), and on several ideas developed in [1] and [7] for solving similar
problems for the class of planar graphs. Because of space limitations we just outline
the main ingredients of our analysis.

The first thing is to analyze the exponential generating function

B(x, y) =
∑

bn,qy
q xn

n!
,

where bn,q is the number of 2-connected SP graphs with n vertices and q edges.
For a fixed value of y in a suitable (complex) neighborhood of 1, we determine
the dominant singularity R(y) of B(x, y) and we show that the following singular
expansion holds

B(x, y) = B0(y) + B2(y)X2 + B3(y)X3 + O(X4),

where X =
√

1 − x/R(y) and B0(y), B2(y), B3(y) are analytic functions of y.
Then we set y = 1, so that B(x) = B(x, 1) =

∑
bn

xn

n! . Applying singularity
analysis, we obtain the first part of Theorem 1. The constant R appearing there is
precisely R(1).

Next we consider the generating functions C(x, y) and G(x, y), defined analo-
gously for connected and arbitrary SP graphs, respectively. The series B, C and G
are related through the following two equations

G(x, y) = exp(C(x, y)), xC′(x, y) = x exp (B′(xC′(x, y), y)) ,

where derivatives are always with respect to the first variable.
The second equation can be reinterpreted by saying that

ψ(x, y) = xe−B′(x,y)

is the functional inverse of F (x, y) = xC′(x, y). We show that for y close to 1,
ψ′(x, y) has a positive root τ(y). By the general principles of singularity analysis,
it follows that the radius of convergence of F (x, y) is ρ(y) = ψ(τ(y), y). We next find
the singular expansion of F (x, y) at ρ(y), and from this the singular expansions of
C(x, y) and G(x, y), whose dominant singularity is also ρ(y). Again by singularity
analysis, the estimates for cn and gn in Theorem 1 follow.

The singular expansion of G(x, y) is of the form

G(x, y) = G0(y) + G2(y)X2 + G3(y)X3 + O(X4),

where now X =
√

1 − x/ρ(y) and the Gi are analytic functions of y. Using the
extensions of the central limit theorem based on perturbation of singularities [5],
we are able to proof Theorem 2; the constants κ and λ are computed using the
values of ρ(1), ρ′(1), ρ′′(1).

The analysis for outerplanar graphs is similar but simpler, since the analogous
generating function B(x, y) is obtained directly from the (ordinary) generating for
dissections of a convex polygon [3]. In fact, B′(x, y) is given by

B′(x, y) =
1 + xy(3 + 2y) −

√
1 − xy(2 + 4y) + x2y2

4(1 + y).
Finally, for the proof of Theorem 3, the key observation is that, for fixed k, the

generating function of SP graphs with exactly k connected components is C(x)k/k!.
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Since we have a full singular expansion of C(x), we can estimate precisely the
coefficient of xn in C(x)k, and this is all that is needed in order to derive the
Poisson limit law.
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