login
a(m,0) = a(m,m) = 2; a(m,n) = sum of primes (with repetition) dividing a(m-1,n-1) and of primes (with repetition) dividing a(m-1,n).
1

%I #10 Mar 14 2015 18:35:25

%S 2,2,2,2,4,2,2,6,6,2,2,7,10,7,2,2,9,14,14,9,2,2,8,15,18,15,8,2,2,8,14,

%T 16,16,14,8,2,2,8,15,17,16,17,15,8,2,2,8,14,25,25,25,25,14,8,2,2,8,15,

%U 19,20,20,20,19,15,8,2,2,8,14,27,28,18,18,28,27,14,8,2,2,8,15,18,20,19

%N a(m,0) = a(m,m) = 2; a(m,n) = sum of primes (with repetition) dividing a(m-1,n-1) and of primes (with repetition) dividing a(m-1,n).

%C Numbers not appearing in this sequence: 1,3,5,11,12,13 and probably no others. - _Robert G. Wilson v_, Sep 03 2004

%e a(6,2) = sum of primes dividing a(5,1) = 9, 3+3 and of primes dividing a(5,2) = 14, 2+7. So a(6,2) = 3 + 3 + 2 + 7 = 15.

%e Triangle begins:

%e 2

%e 2 2

%e 2 4 2

%e 2 6 6 2

%e 2 7 10 7 2

%e 2 9 14 14 9 2

%e 2 8 15 18 15 8 2

%e 2 8 14 16 16 14 8 2

%e 2 8 15 17 16 17 15 8 2

%t PrimeFactors[n_] := Flatten[ Table[ #[[1]], { #[[2]]}] & /@ FactorInteger[n]]; a[m_, 0] = a[m_, m_] = 2; a[m_, n_] := a[m, n] = Plus @@ Join[ PrimeFactors[ a[m - 1, n - 1]], PrimeFactors[ a[m - 1, n]]]; Table[ a[m, n], {m, 0, 12}, {n, 0, m}] (* _Robert G. Wilson v_, Sep 03 2004 *)

%Y Row maxima in A098330.

%K nonn,tabl

%O 0,1

%A _Leroy Quet_, Sep 01 2004

%E More terms from _Robert G. Wilson v_, Sep 03 2004