%I
%S 0,1,1,1,1,1,2,3,4,5,6,7,8,15,22,29,36,43,50,57,64,71,78,85,92,99,106,
%T 113,219,332,445,558,671,784,897,1010,1123,1236,1349,1462,1575,1688,
%U 1801,1914,2027,2140,2253,2366,2479,2592,2705,2818,2931,3044,3157,3270
%N Denominators of "Farey fraction" approximations to Pi.
%C Given a real number x >= 1 (here x = Pi), start with 1/0 and 0/1 and construct the sequence of fractions f_n = r_n/s_n such that:
%C f_{n+1} = (r_k + r_n)/(s_k + s_n) where k is the greatest integer < n such that f_k <= x <= f_n. Sequence gives values s_n.
%C Write a 0 if f_n <= x and a 1 if f_n > x. This gives (for x = Pi) the sequence 1, 0, 0, 0, 1, 1, 1, 1, 0 (7 times), 1 (15 times, 0, 1,... Ignore the initial string 1, 0, 0, 0, which is always the same. Look at the runs lengths of the remaining sequence, which are in this case L_1 = 4, L_2 = 7, L_3 = 15, L_4 = 1, L_5 = 292, etc. (A001203). Christoffel showed that x has the continued fraction representation (L_1  1) + 1/(L_2 + 1/(L_3 + 1/(L_4 + ...))).
%D C. Brezinski, History of Continued Fractions and PadÃ© Approximants, SpringerVerlag, 1991; pp. 151152.
%D E. B. Christoffel, Observatio arithmetica, Ann. Math. Pura Appl., (II) 6 (1875), 148153.
%H Dave Rusin, <a href="http://www.math.niu.edu/~rusin/knownmath/99/farey">Farey fractions on sci.math</a> [Broken link]
%H Dave Rusin, <a href="/A002965/a002965.txt">Farey fractions on sci.math</a> [Cached copy]
%e The fractions are 1/0, 0/1, 1/1, 2/1, 3/1, 4/1, 7/2, 10/3, 13/4, 16/5, 19/6, 22/7, 25/8, 47/15, ...
%t f[x_, n_] := (m = Floor[x]; f0 = {m, m+1/2, m+1};
%t r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c}; Join[{m, m+1}, NestList[# /. r &, f0, n3][[All, 2]]]); Join[{1, 0, 1, 2}, f[Pi, 52]] // Denominator (* _JeanFranÃ§ois Alcover_, May 18 2011 *)
%Y Cf. A097545.
%K nonn,frac,nice,easy
%O 0,7
%A _N. J. A. Sloane_, Aug 28 2004
%E Corrected and extended by _Joshua Zucker_, May 08 2006
