login
Rectangular array T(n,k) read by antidiagonals; generating function of row n is 1/F(n,x), where F(n,x) is the polynomial 1 - x - x^2 - 2*x^3 -...- F(n+1)*x^n and F(n+1) is the (n+1)st Fibonacci number, for n=0,1,2,...
2

%I #3 Mar 30 2012 18:57:05

%S 1,1,1,1,1,1,1,2,1,1,1,3,2,1,1,1,5,5,2,1,1,1,8,9,5,2,1,1,1,13,18,12,5,

%T 2,1,1,1,21,37,24,12,5,2,1,1,1,34,73,52,29,12,5,2,1,1,1,55,146,115,62,

%U 29,12,5,2,1,1,1,89,293,251,140,70,29,12,5,2,1,1,1,144,585,542,321,156,70

%N Rectangular array T(n,k) read by antidiagonals; generating function of row n is 1/F(n,x), where F(n,x) is the polynomial 1 - x - x^2 - 2*x^3 -...- F(n+1)*x^n and F(n+1) is the (n+1)st Fibonacci number, for n=0,1,2,...

%e Rows begin:

%e 1 1 1 1 1 ... = A000012, with g.f. 1/(1-x)

%e 1 1 2 3 5 ... = A000045, with g.f. 1/(1-x-x^2)

%e 1 1 2 5 9 ... = A077947, with g.f. 1/(1-x-x^2-2*x^3)

%Y Cf. A000045, A096670. Rows converge to A000129.

%K nonn,tabl

%O 1,8

%A _Clark Kimberling_, Jul 03 2004