%I #15 Oct 15 2024 08:48:18
%S 1,28,38,703,1891,4186,8128,2873,23653,36856,54946,79003,22043,149878,
%T 199396,260281,334153,84548,527878,651511,795691,962578,230888,
%U 1373653,1622701,1904176,2220778,515063,2970703,3409966,3896236
%N Numerator of (9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1)).
%H G. C. Greubel, <a href="/A096430/b096430.txt">Table of n, a(n) for n = 1..2000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MagicHexagon.html">Magic Hexagon</a>
%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,5,0,0,0,0,-10,0,0,0,0,10,0,0,0,0,-5,0,0,0,0,1).
%e 1, 28/3, 38, 703/7, 1891/9, 4186/11, ... = A096430/A096431.
%p A096430:=n->numer((9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1))): seq(A096430(n), n=1..50); # _Wesley Ivan Hurt_, Jan 21 2017
%t Table[Numerator[(9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))], {n,50}] (* _G. C. Greubel_, Oct 14 2024 *)
%o (Magma)
%o A096430:= func< n | Numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))) >;
%o [A096430(n): n in [1..50]]; // _G. C. Greubel_, Oct 14 2024
%o (SageMath)
%o def A096430(n): return numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1)))
%o [A096430(n) for n in range(1,51)] # _G. C. Greubel_, Oct 14 2024
%Y Cf. A096431 (denominators), A097362.
%K nonn,easy,frac
%O 1,2
%A _Eric W. Weisstein_, Aug 09 2004