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We de�ne three constants

C1 =

∞∏
n=1

(
1− 1

(4n+ 1)2

)
= 0.92703 73386...

C2 =

∞∏
n=0

(
1− 1

(4n+ 2)2

)
= 0.70710 67811...

C3 =

∞∏
n=0

(
1− 1

(4n+ 3)2

)
= 0.84721 30847...

These constants, and several related constants, are recorded in the OEIS.
C1 is A224268. 2C1 is A093341. It follows easily from Euler's in�nite product

representation for the cosine function that C2 is equal to cos
(
π
4

)
=
√

2
2 , entry

A010503. The constant C3 is A096427; its reciprocal 1/C3 is A175574. The
constant C2

3 is A293238; its reciprocal 1/C2
3 is A091670, the value of the �rst

of Watson's triple integrals. The constant 8C1C2 is A064853, the perimeter of
the lemniscate curve r = cos(2θ). The constant 2C1/C3 is A254794.

Our interest in the constants C1 and C3 arose when they appeared in some
hypergeometric sums we were investigating. This is explained in Section 2.
First we list some results for the constants C1 and C3.

Relationship between C1 and C3�
�

�
�C1C3 =

π

4
(1)

Proof. The rearrangement of terms in the following is justi�ed since the
in�nite products involved converge absolutely.

C1C3 =

∞∏
n=1

(
1− 1

(4n+ 1)2

) ∞∏
n=0

(
1− 1

(4n+ 3)2

)

=

∞∏
n=1

(
1− 1

(4n− 1)2

)(
1− 1

(4n+ 1)2

)

=

∞∏
n=1

(
1− 1

(2n+ 1)2

)
. (2)
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We evaluate the latter product by means of Euler's in�nite product
representation for the cosine function:

cos(πx) =

∞∏
n=0

(
1− 4x2

(2n+ 1)2

)
, x ∈ C,

rearranged into the form

cos(πx)

1− 4x2
=

∞∏
n=1

(
1− 4x2

(2n+ 1)2

)
.

Let now x approach 1
2 and use L'Hôpital's rule to �nd

π

4
=

∞∏
n=1

(
1− 1

(2n+ 1)2

)
(3)

= C1C3

by (2). �

Representation in terms of the gamma function

'

&

$

%

C1 =
Γ
(

1
4

)2
8
√
π

(4)

C3 =
Γ
(

3
4

)2
√
π

(5)

These well-known results are proved in Appendix A, along with the proof
for the following continued fraction expansions.

Generalised continued fraction expansions

'

&

$

%

C1 :

1− 1

5 +

20

1 +

30

3 + · · · +

4n(4n+ 1)

1 +

(4n+ 1)(4n+ 2)

3 + · · · (6)

C3 :

1− 1

3 +

6

1 +

12

3 + · · · +

(4n− 2)(4n− 1)

1 +

(4n− 1)(4n)

3 + · · · (7)
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$

%

C1

C3
:

1

2

(
1 +

2

1 +

3

2 +

15

2 + · · · +

(2n− 1)(2n+ 1)

2 + · · ·

)
(8)

In�nite products'

&

$

%

For m = 0, 1, 2, ...,

C1 =
(−1)m22m+1

Catalan(m)

∞∏
n=1

(
1− (4m+ 3)2

(4n+ 1)2

)
(9)

C3 =
(−1)m22m(

2m
m

) ∞∏
n=0

(
1− (4m+ 1)2

(4n+ 3)2

)
(10)

For m = 0, 1, 2, ...,

C1

C3
= −1

2

m∏
k=1

(1− 4k)

(1 + 4k)

∞∏
n=0

(
1− (4m+ 2)2

(4n+ 1)2

)
(11)

C3

C1
= 2

m∏
k=1

(1 + 4k)

(1− 4k)

∞∏
n=0

(
1− (4m+ 2)2

(4n+ 3)2

)
(12)

Series representations

'

&

$

%

C1 =

∞∑
n=0

(− 1
2
n

)
4n+ 1

; C1 =
1

2

∞∑
n=0

(−1)n
(− 3

4
n

)
4n+ 1

(13)

C3 = 1−
∞∑
n=0

( 1
2

n+1

)
4n+ 3

(14)
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These results are particular cases of two product-to-sum identities proved in
Section 2.2, Theorem 1.

Integral representations

'

&

$

%

C1 =

∫ 1

0

dx√
1 + x4

(15)

C3 =

∫ 1

0

1 + x2 −
√

1 + x4

x2
dx (16)

These integral representions are equivalent to the corresponding series
representations immediately above. To see this, we expand the integrands
using the binomial theorem and then integrate the resulting series term by
term from 0 to u < 1 (allowable, since we are in the region of uniform
convergence of the series). We then invoke Abel's lemma to justify setting
u = 1 in the results, when the �rst series in (13) and the series in (14) are
obtained.

Theta function representations

'

&

$

%

C1 =
π

4

( ∞∑
n=−∞

e−πn
2

)2

(17)

C3 =
1( ∞∑

n=−∞
e−πn

2

)2 (18)

Conjecturally,

C3 =
1( ∞∑

n=−∞
e−π(n+ 1

2 )
2

)2 (19)
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For (18), see Section 7 in the Wikipedia entry - Theta function.

Section 2

In Section 2.1 we sketch a method for representing the in�nite product

constant

∞∏
n=1

(
1− 1

(2n+ 1)2

)
as a series. In Section 2.2 we follow a similar

path to �nd the series representations for the in�nite products C1 and C3

stated in (13) and (14).

2.1 Ramanujan gave the following hypergeometric summation [Berndt,
Example 8, p. 21]:

1− 3
(x− 1)

(x+ 1)
+ 5

(x− 1)(x− 2)

(x+ 1)(x+ 2)
− · · · = 0, Re(x) > 1. (20)

In [Bala], we investigated hypergeometric series Sr(x), r ∈ Z de�ned as

Sr(x) = 1− 3r
(x− 1)

(x+ 1)
+ 5r

(x− 1)(x− 2)

(x+ 1)(x+ 2)
− · · · .

Ramanujan's result (20) says that the series S1(x) vanishes identically for
Re(x) > 1.

Let ak(x) denote the rational function of x

ak(x) =
(x− 1)(x− 2) . . . (x− k)

(x+ 1)(x+ 2) . . . (x+ k)
, k = 1, 2, 3, ...,

with a0(x) = 1, so that

Sr(x) =

∞∑
k=0

(−1)k(2k + 1)rak(x).

It is easy to verify that the function ak(x) satis�es the recurrence equation
(in x)

(2k + 1)2ak(x) = (2x− 1)2ak(x)− 4x(x− 1)ak(x− 1). (21)

We immediately obtain the corresponding recurrence for the series Sr(x)
(putting aside issues of convergence):

Sr+2(x) = (2x− 1)2Sr(x)− 4x(x− 1)Sr(x− 1). (22)

In particular, this recurrence holds when x = n, a positive integer, because in
this case all the series Sr(n) terminate since ak(n) = 0 for k ≥ n.
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Setting r = −1 in the recurrence (22) leads, after a short calculation, to a
product representation for the series S−1(n):

1− 1

3

(n− 1)

(n+ 1)
+

1

5

(n− 1)(n− 2)

(n+ 1)(n+ 2)
− · · · =

n−1∏
j=1

(
1− 1

(2j + 1)2

)
.

(23)

Now let n tend to ∞ on both sides of (23): with a little care 1 we can justify
taking the limit term by term in the series on the left-hand side of (23) to
obtain the series - to - product identity

1− 1

3
+

1

5
− · · · =

∞∏
j=1

(
1− 1

(2j + 1)2

)
. (24)

By (3), this result is equivalent to the famous Madhava - Leibniz series for π
4 .

2.2 Series representations for C1 and C3

Let now bn(x) denote the rational function in x

bk(x) =
(x− 1)(x− 2) · · · (x− k)(

x+ 1− 1
2

) (
x+ 2− 1

2

)
· · ·
(
x+ k − 1

2

) k = 1, 2, 3, ... . (25)

It is not di�cult to verify that the functions bk(x), k = 0, 1, 2, ..., satisfy the
following recurrence equation in x:

(4k + 1)2bk(x) = (4x− 3)2bk(x)− (4x− 2)(4x− 4)bk(x− 1). (26)

Let f(n) be (for the moment) an arbitrary arithmetical function and consider
the series Sr(f ;x), r ∈ Z, de�ned by

Sr(f ;x) = 1 +

∞∑
k=1

(4k + 1)rf(k)bk(x). (27)

Setting aside questions of convergence, it follows immediately from (26) that
the series Sr(f ;x) satis�es the recurrence

Sr+2(f ;x) = (4x− 3)2Sr(f ;x)− (4x− 2)(4x− 4)Sr(f ;x− 1). (28)

In particular, this recurrence will hold if x is a positive integer n, since in this
case the series Sr(f, n) terminate and questions of convergence do not arise.

1 An example of the type of reasoning needed here can be found in Knopp's Theory and

Application of In�nite Series, Dover Publ. 1990, §23, p. 193.
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Following the development in Section 2.1, we look for an arithmetical func-
tion f(n) such that the series

S1(f ;n) = 1 + 5f(1)b1(n) + 9f(2)b2(n) + · · · (29)

vanishes for all integer n ≥ 2. The required values of f(1), f(2), ... may be easily
determined by successively setting n = 2, 3, 4, ... in the terminating series (29)
and equating the results to 0. After a short calculation we obtain the following
results: f(1) = − 1

2 , f(2) = 3
8 , f(3) = − 5

16 , f(4) = 35
128 , f(5) = − 63

256 , f(6) =
231
1024 , f(7) = − 429

2048 , ... . A search of the OEIS for the sequence of (unsigned)
numerators of these values returns a single potential match in A001790 - the
sequence of numerators in the expansion of 1/

√
1− x. This suggests that the

correct choice for f(n) to ensure that the series S1(f ;n) vanishes is f(n) =
(− 1

2
n

)
.

We now verify this. For the remainder of this section we take f(n) =
(− 1

2
n

)
.

Proposition 1. We have S1(f ;n) = 0 for n = 2, 3, 4, ... .

Proof. It is not di�cult to inductively show that the pth partial sum of the
series S1(f ;x) is equal to

2p
(
− 3

2

p

)
(x− 2)(x− 3) · · · (x− (p+ 1))

(2x+ 1)(2x+ 3) · · · (2x+ 2p− 1)
.

Therefore, for a �xed integer n ≥ 2, the pth partial sum of the series S1(f ;n) is
equal to zero provided p ≥ n− 1. Hence the series S1(f ;n), as the limit of
these partial sums, also has the value zero. �

Corollary 1. For r = 0, 1, 2, ..., and for integer n ≥ r + 2, the series

S2r+1(f ;n) = 0.

Follows immediately from Proposition 1 and the recurrence (28). �

Proposition 2 Let n be a positive integer. Then

S−1(f ;n) =

n−1∏
k=1

(
1− 1

(4k + 1)2

)
. (30)

Proof. The result clearly holds when n = 1 if we adopt the usual convention
that empty products have the value 1. Suppose now that n ≥ 2. Set r = −1 in
the recurrence (28) and use Proposition 1 to �nd

0 = (4n− 3)2S−1(f ;n)− (4n− 2)(4n− 4)S−1(f ;n− 1), n = 2, 3, 4, ...,

from which we get

S−1(f ;n) =
(4n− 2)(4n− 4)

(4n− 3)2
S−1(f ;n− 1)

=

(
1− 1

(4n− 3)2

)
S−1(f ;n− 1).
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Iterating this result yields

S−1(f ;n) =

(
1− 1

(4n− 3)2

)
· · ·
(

1− 1

52

)
S−1(f ; 1)

Clearly, S−1(f ; 1) = 1 from the de�nition of the series Sr(f ;x) in (27), and so
we have completed the proof that

S−1(f ;n) =

n−1∏
k=1

(
1− 1

(4k + 1)2

)
(31)

when n is a positive integer.�

Corollary 2.

C1 =

∞∏
k=1

(
1− 1

(4k + 1)2

)
=

∞∑
n=0

(− 1
2
n

)
4n+ 1

. (32)

Proof. Let n→∞ on both sides of (31). Again, with a little care, we can
justify letting n→∞ term by term in the series on the left side of (31). �

We may view Corollary 2 as an analogue of the Madhava - Leibniz series for
π :

∞∑
n=0

(−1)n

2n+ 1
=

π

4
. (33)

The analogy between (32) and (33) becomes clearer if we note that
(−1)n =

(−1
n

)
and then use (3) to recast the Madhava - Leibniz series into the

form

∞∑
n=0

(−1
n

)
2n+ 1

=

∞∏
k=1

(
1− 1

(2k + 1)2

)
. (34)

In fact the pair of results (32) and (34) are the particular cases x = − 1
4 and

x = − 1
2 of part (i) of the following sum-to-product identities:

Theorem 1. (i) Let Re(x) > −1 and x 6= 0, 1, 2, ... . Then

∞∑
n=0

(
2x

n

)
x

x− n
=

∞∏
k=1

(
1− x2

(k − x)2

)
. (35)

(ii) Let Re(x) < 0 and x 6= 0, 1, 2, ... . Then

∞∑
n=0

(
x+ n

n

)
x

x− n
= 2

∞∏
k=1

(
1− x2

(k − x)2

)
. (36)
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Proof. The series on the left-hand side of (35) is a Gaussian hypergeometric
function:

∞∑
n=0

(
2x

n

)
x

x− n
= 2F1(−2x,−x; 1− x;−1).

By standard results in hypergeometric function theory the series converges
provided Re(x) > −1; the convergence is absolute when Re(x) > − 1

2 .

Applying Kummer's non-terminating summation theorem [see, for example,
W. N. Bailey, "Kummer's Theorem" �2.3 in Generalised Hypergeometric
Series: Cambridge University Press, pp. 9-10, 1935]

2F1(a, b; 1 + a− b;−1) =
Γ(1 + a− b)Γ

(
1 + a

2

)
Γ(1 + a)Γ(1 + a

2 − b)
, Re(b) < 1,

with a = −2x, b = −x and c = 1− x, where Re(x) > −1, yields

∞∑
n=0

(
2x

n

)
x

x− n
=

Γ(1− x)Γ (1− x)

Γ(1− 2x)Γ(1)

=

∞∏
k=0

(
(k + 1)(k + 1− 2x)

(k + 1− x)(k + 1− x)

)

=

∞∏
k=1

(
k(k − 2x)

(k − x)2

)

=

∞∏
k=1

(
1− x2

(k − x)2

)
.

The representation of the ratio of gamma functions as an in�nite product used
in the above follows easily from the Weierstrass product formula for the
gamma function. See Appendix A, equation (45) .

(ii) The series on the left-hand side of (36) is a Gaussian hypergeometric
function:

∞∑
n=0

(
x+ n

n

)
x

x− n
= 2F1(1 + x,−x; 1− x; 1).

Again, by standard results in hypergeometric function theory, the hyperge-
ometric series converges absolutely when Re(x) < 0.

Applying Gauss's theorem [see, for example, W. N. Bailey, "Gauss's Theorem"
�1.3 in Generalised Hypergeometric Series: Cambridge University Press, pp.
2-3, 1935]

2F1(a, b; c; 1) =
Γ(c)Γ (c− a− b)
Γ(c− a)Γ(c− b)

, Re(a+ b− c) < 0,
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with a = 1 + x, b = −x and c = 1− x, where Re(x) < 0, yields

∞∑
n=0

(
x+ n

n

)
x

x− n
=

Γ(1− x)Γ (−x)

Γ(−2x)Γ(1)

=
−2x

−x
Γ(1− x)Γ(1− x)

Γ(1− 2x)Γ(1)

= 2

∞∏
k=1

(
1− x2

(k − x)2

)
,

by the calculation in part (i). �

To obtain series representations for the constant C1 put x = − 1
4 in (35) and in

(36) to give the pair of results stated in (13)

C1 =

∞∑
n=0

(− 1
2
n

)
4n+ 1

, C1 =
1

2

∞∑
n=0

(−1)n
(− 3

4
n

)
4n+ 1

.

To obtain a series representation for the constant C3 put x = 1
4 in (35) to �nd

∞∑
n=0

( 1
2
n

)
1− 4n

=

∞∏
k=1

(
1− 1

(4k − 1)2

)
,

or equivalently,

1−
∞∑
n=0

( 1
2

n+ 1

)
1

4n+ 3
=

∞∏
k=0

(
1− 1

(4k + 3)2

)
(37)

= C3.

This is the series representation for the constant C3 stated in (14). We give an
alternative approach to Theorem 1 part (i) in Appendix B.

2.3 The series S−3(f, n), S−5(f, n), ... .

Recall the series Sr(f ;x), r ∈ Z, was de�ned by

Sr(f ;x) = 1 +

∞∑
k=1

(4k + 1)rf(k)bk(x),

where f(n) =
(− 1

2
n

)
. To abbreviate notation let us write

P (n) =

n−1∏
k=1

(
1− 1

(4k + 1)2

)
.
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Proposition 2 tells us that S−1(f ;n) = P (n) for positive integer n. Then
putting r = −3 in the recurrence (28) gives

P (n) = (4n− 3)2S−3(f ;n)− (4n− 2)(4n− 4)S−3(f ;n− 1), (38)

from which we get

S−3(f ;n) = P (n)
1

(4(n− 1) + 1)2
+

(
1− 1

(4(n− 1) + 1)2

)
S−3(f ;n− 1).

A simple induction argument shows that the solution to this recurrence is
given by

S−3(f ;n) = P (n)

n−1∑
k=0

1

(4k + 1)2
. (39)

Next we set r = −5 in recurrence (28), and after a similar calculation to the
case r = −3, arrive at the result

S−5(f ;n) = P (n)

n−1∑
j=0

1

(4j + 1)2

j−1∑
k=0

1

(4k + 1)2
. (40)

The general result, provable by an induction argument, is a multiple series
expression for the series S−(2r+1)(f ;n), r = 1, 2, 3, ... :

S−(2r+1)(f ;n) = P (n)

 ∑
0≤k1≤···≤kr≤n−1

1

(4k1 + 1)
2 · · · (4kr + 1)

2

 .(41)

If we let n tend to in�nity in (41) we obtain the following result, expressing an
r-fold multiple sum in terms of a single summation: for r = 1, 2, 3, ..., there
holds

C1

 ∑
0≤k1≤···≤kr

1

(4k1 + 1)
2 · · · (4kr + 1)

2

 =

∞∑
n=0

(− 1
2
n

)
(4n+ 1)2r+1

. (42)

A more general result, obtained by a similar analysis to the foregoing (see
Appendix B, equation (60)), is that for r = 1, 2, 3, ..., m /∈ [0, 1/(r + 1)], and
m /∈

{
−1,− 1

2 ,−
1
3 , . . .

}
we have

C(m)

 ∑
0≤k1≤···≤kr

1

(mk1 + 1)
2 · · · (mkr + 1)

2

 =

∞∑
n=0

(− 2
m
n

)
(mn+ 1)2r+1

,

(43)
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where the constant C(m) is given by

C(m) =

∞∏
k=1

(
1− 1

(mk + 1)2

)
. (44)

The case m = −4 gives a companion result to (42):

C3

 ∑
0≤k1≤···≤kr

1

(4k1 − 1)
2 · · · (4kr − 1)

2

 = 1−
∞∑
n=1

( 1
2

n+1

)
(4n+ 3)2r+1

,

Setting m = 1 in (43) gives

1

2

 ∑
1≤k1≤···≤kr

1

k2
1 · · · k2

r

 =

∞∑
n=1

(−1)n+1

n2r
, r ∈ Z≥1,

a well-known result in the theory of multiple zeta star values. See, for
example, [Aoki and Ohno, Theorem 1 with k = 2r and s = r].
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Gamma function representations Let un = (n+a1)(n+a2)
(n+b1)(n+b2) , a rational

function of n, where a1 + a2 = b1 + b2. Then the in�nite product

∞∏
n=0

un

converges absolutely and has the value

∞∏
n=0

(n+ a1)(n+ a2)

(n+ b1)(n+ b2)
=

Γ (b1) Γ (b2)

Γ (a1) Γ (a2)
. (45)

The result follows easily from the Weierstrass product formula for the gamma
function. For details of the proof and a generalisation of this result see
[Whittaker and Watson, p. 238].

By de�nition

C1 =

∞∏
n=1

(
1− 1

(4n+ 1)2

)
=

∞∏
n=1

4n(4n+ 2)

(4n+ 1)2

=

∞∏
n=1

n
(
n+ 1

2

)(
n+ 1

4

) (
n+ 1

4

)
=

∞∏
n=0

(n+ 1)
(
n+ 3

2

)(
n+ 5

4

) (
n+ 5

4

)
after reindexing. Now apply (45) to �nd

C1 =
Γ
(

5
4

)
Γ
(

5
4

)
Γ(1)Γ

(
3
2

) =

(
1
4

)2
Γ
(

1
4

)2
1
2Γ
(

1
2

)
=

Γ
(

1
4

)2
8
√
π

, (46)

which is the result stated in (4). The corresponding result for the constant C3

stated in (5) is found in an exactly similar manner.

Continued fractions There is a general method due to [Stern, p. 266] to
convert a product to a continued fraction. We shall apply Stern's method to
�nd a continued fraction representation for the product

∞∏
n=0

(n+ a1)(n+ a2)

(n+ b1)(n+ b2)
, (47)

where a1 + a2 = b1 + b2. Results (6), (7) and (8) are particular cases of this
general result.
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De�ne the partial products Pn and Qn of the numerator and denominator of
the in�nite product (47) by setting P0 = 1, P1 = a1, and thereafter

P2n =

n−1∏
k=0

(k + a1)(k + a2), n ≥ 1

P2n+1 = (n+ a1)P2n, n ≥ 1,

and setting Q0 = 1, Q1 = b1, and thereafter

Q2n =

n−1∏
k=0

(k + b1)(k + b2), n ≥ 1

Q2n+1 = (n+ b1)Q2n, n ≥ 1.

Let δ = b2 − a1 = a2 − b1. It is not di�cult to check that the partial products
Pn and Qn satisfy the following recurrence equations of order 2:

P2n = δP2n−1 + (n− 1 + a1) (n− 1 + b1)P2n−2

Q2n = δQ2n−1 + (n− 1 + a1) (n− 1 + b1)Q2n−2

and

P2n+1 = (1− δ)P2n + (n− 1 + a2) (n− 1 + b2)P2n−1

Q2n = (1− δ)Q2n−1 + (n− 1 + a2) (n− 1 + b2)Q2n−2.

By the general theory of continued fractions these recurrences translate to the
�nite continued fraction expansion

P2n

Q2n
= 1 +

a1 − b1
b1 +

a1b1
δ +

a2b2
1− δ +

(1 + a1) (1 + b1)

δ + · · · +

(1 + a2) (1 + b2)

1− δ + · · ·

+

(n− 1 + a1) (n− 1 + b1)

δ
.

Letting n→∞, and remembering (45), yields the in�nite continued fraction
expansion

Γ (b1) Γ (b2)

Γ (a1) Γ (a2)
= 1 +

a1 − b1
b1 +

a1b1
δ +

a2b2
1− δ +

(1 + a1) (1 + b1)

δ + · · · +

(1 + a2) (1 + b2)

1− δ + · · · ,

(48)

where we recall that a1 + a2 = b1 + b2 and δ = b2 − a1.
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We apply this result to �nd a continued fraction representation for the
constant C1. As an intermediate step in arriving at (46) we had the following
representation for C1 in terms of the gamma function:

C1 =
Γ
(

5
4

)
Γ
(

5
4

)
Γ(1)Γ

(
3
2

)
=

Γ
(

5
4

)
Γ
(

5
4

)
Γ( 4

4 )Γ
(

6
4

) .
Applying (48) to this ratio of gamma function values with a1 = 4

4 , a2 = 6
4 ,

b1 = b2 = 5
4 (so that δ = b2 − a1 = 1

4 ) we obtain the continued fraction
representation

C1 = 1 +
− 1

4
5
4 +

4
4 ×

5
4

1
4 +

5
4 ×

6
4

3
4 +

8
4 ×

9
4

1
4 +

9
4 ×

10
4

3
4 + · · · .

Repeated use of equivalence transformations puts this result into the form

C1 = 1− 1

5 +

4× 5

1 +

5× 6

3 +

8× 9

1 +

9× 10

3 + · · · ,

whci is the result stated earlier in (6). The continued fraction expansions (7)

and (8) for the constants C3 =
Γ( 3

4 )Γ( 3
4 )

Γ( 2
4 )Γ( 4

4 )
and C1/C3 = 1

2

Γ( 1
4 )Γ( 5

4 )
Γ( 3

4 )Γ( 3
4 )

are found in

the same way.

APPENDIX B

We outline how the reults of Section 2.2 may be generalised.

Let α be a complex number. De�ne a sequence of rational functions
bn(α, x) ≡ bn(x) in x, for n = 0, 1, 2, ..., by putting b0(x) = 1 and setting

bn(x) =

n∏
j=1

x− j
x+ j − (2α+ 1)

(49)

for n ≥ 1. In Section 2.2 above we considered the particular case α = − 1
4 . It is

not di�cult to verify that the functions bn(x), n = 0, 1, 2, ..., satisfy the
following recurrence equation in x:

(n− α)2bn(x) = (x− α− 1)2bn(x)− (x− 1)(x− 2α− 1)bn(x− 1). (50)

De�ne series Sr(α, x) ≡ Sr(x) by

Sr(x) =

∞∑
n=0

(
2α

n

)
(α− n)rbn(x). (51)
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We will be interested in the case where r is negative, so from now on we
suppose that α 6= 0, 1, 2, ... . Note that if N is a positive integer then the series
Sr(N) terminates since bk(N) = 0 for k ≥ N.

Let N ≥ 2 be an integer. If we set x = N in (50), then multiply the
resulting equation by the factor

(
2α
n

)
(α− n)r and sum over n, we see that the

terminating series Sr(N) satis�es the recurrence equation

Sr+2(N) = (N − α− 1)2Sr(N)− (N − 1)(N − 2α− 1)Sr(N − 1). (52)

We will use this recurrence to investigate the odd -indexed series S2r+1(N)
when r is a nonpositive integer. The initial case is when r = 0. Using the
method of telescopic summation it is not di�cult to show that

S1(N) = 0 for N = 2, 3, 4, ... . (53)

Now put r = −1 in the recurrence (52). Then by (53) we have for
N = 2, 3, 4, ...,

0 = (N − α− 1)2S−1(N)− (N − 1)(N − 2α− 1)S−1(N − 1), (54)

from which we get

S−1(N) =

(
1− α2

(N − α− 1)2

)
S−1(N − 1)

=

(
1− α2

((N − 1)− α)2

)
· · ·
(

1− α2

(1− α)2

)
S−1(1).

From the de�nition of the series Sr(x) in (51) we see that S−1(1) = 1
α . Thus

we have established the identity

αS−1(N) =

∞∑
n=0

(
2α

n

)
α

α− n
bn(N) =

N−1∏
k=1

(
1− α2

(k − α)2

)
, (55)

where N is a positive integer and α ∈ C− {0, 1, 2, ...} .

Now we further restrict α by requiring that Re(α) > −1, so that the

hypergeometric series

∞∑
n=0

(
2α

n

)
α

α− n
converges as noted in Theorem 1.

Finally, let N →∞ in (55). With a little care 2 we can justify taking the

2 As previously noted, an example of the type of reasoning needed here can be found in

Knopp's Theory and Application of In�nite Series, Dover Publ. 1990, §23, p. 193.
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termwise limit in the sum on the left-hand side of (55) to arrive at the
sum-to-product identity

∞∑
n=0

(
2α

n

)
α

α− n
=

∞∏
k=1

(
1− α2

(α− k)2

)
, Re(α) > −1, α 6= 0, 1, 2, ... . (56)

Thus we have arrived at part (i) of Theorem 1 from Section 2.2 by a di�erent
approach.

The in�nite product on the right-hand side of (56) converges absolutely and
de�nes a meromorphic function in the complex variable α, with simple poles
when α = 1, 2, 3, ... . From the series representation we see that the residue of
this function at the pole α = n equals n

(
2n
n

)
. We can view the in�nite product

as the analytic continuation of the series on the left-hand side of (56) to the
complex plane. Next we generalise the results of Section 2.3.

The series S−3(N), S−5(N),... Having found a product formula for the
series S−1(N) when N is a positive integer in (55), we can use recurrence (52)
to succesively obtain results for the terminating series S−3(N), S−5(N) and so
on. After a short calculation we �nd

S−3(N) =
1

α

N−1∏
k=1

(
1− α2

(k − α)2

)N−1∑
k=0

1

(k − α)2
, (57)

S−5(N) =
1

α

N−1∏
k=1

(
1− α2

(k − α)2

) ∑
0≤k1≤k2≤N−1

1

(k2 − α)2(k1 − α)2
, (58)

and in general

S−(2p+1)(N) =
1

α

N−1∏
k=1

(
1− α2

(k − α)2

) ∑
0≤k1≤···≤kp≤N−1

1

(kp − α)2 · · · (k1 − α)2
.

(59)

Letting N →∞ in (59) yields

∞∑
n=0

(
2α

n

)
1

(α− n)2p+1
=

1

α

∞∏
k=1

(
1− α2

(k − α)2

) ∑
0≤k1≤···≤kp

1

(kp − α)2 · · · (k1 − α)2
,

(60)

where for convergence of the series on the left-hand side we require
Re(α) > −(p+ 1). As an example, when α = − 1

2 the result reads

∞∑
n=0

(−1)n+1

(2n+ 1)2p+1
=

π

4

∑
0≤k1≤···≤kp

1

(2kp + 1)2 · · · (2k1 + 1)2
. (61)

This result was also given in notes I recently upoaded to A245244 (see
equation 29).
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