login
A096295
a(1) = 2, a(n) = a(n-1) + 3*(a(n-1)-floor(a(n-1)^(1/3))^3).
0
2, 5, 17, 44, 95, 188, 377, 479, 887, 1361, 1451, 1811, 2060, 3056, 3992, 5843, 5876, 6008, 6536, 8648, 10592, 14585, 16868, 20597, 23339, 27500, 29000, 35000, 41696, 48872, 55520, 57464, 65240, 68960, 69077, 69545, 71417, 78905, 93356, 100049
OFFSET
1,1
COMMENTS
A cubic version of the Weintraub recursion.
LINKS
Steven H. Weintraub, An Interesting Recursion, Amer. Math. Monthly, v 111, no. 6, 2004, page 528.
MATHEMATICA
digits=200
a[n_Integer?Positive] := a[n] = a[n-1] + 3*(a[n-1] - Floor[a[n-1]^(1/3)]^3)
a[1] = 2
a0=Table[a[n], {n, 1, digits}]
CROSSREFS
Sequence in context: A136194 A056304 A063106 * A215580 A275210 A219554
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 20 2004
EXTENSIONS
Name edited by Michel Marcus, Jun 03 2019
STATUS
approved