login
Number of fixed polyedges with n edges (number of ways of embedding connected undirected graphs with n edges into the plane square lattice, inequivalent up to translation).
11

%I #25 Dec 06 2023 01:57:33

%S 2,6,22,88,372,1628,7312,33466,155446,730534,3466170,16576874,

%T 79810756,386458826,1880580352,9190830700,45088727820,221945045488,

%U 1095798917674,5424898610958,26922433371778,133906343014110,667370905196930,3332257266746004

%N Number of fixed polyedges with n edges (number of ways of embedding connected undirected graphs with n edges into the plane square lattice, inequivalent up to translation).

%C Found using the rooted method (also known as Redelmeier's algorithm).

%H Alexander Malkis, <a href="https://wwwbroy.in.tum.de/~malkis/Malkis-dipl.pdf">Polyedges, polyominoes and the 'Digit' game</a>, diploma thesis in computer science, Universität des Saarlandes, 2003, Saarbrücken.

%H Stephan Mertens and Cristopher Moore, <a href="https://doi.org/10.1088/1751-8121/aae65c">Series expansion of the percolation threshold on hypercubic lattices</a>, J. Phys. A: Math. Theor., 51 (2018), 475001. See Table 1.

%e _|_|_ is a polyedge with 5 edges

%Y Cf. A019988 for "free" polyedges, A348096.

%Y 6th row of A366767.

%K nonn

%O 1,1

%A _Alexander Malkis_, Jun 22 2004

%E a(22)-a(24) from Mertens & Moore added by _Andrey Zabolotskiy_, Feb 01 2022