%I #19 Jul 23 2023 19:40:31
%S 35,57,1113,1719,2931,4143,5961,7173,101103,107109,137139,149151,
%T 179181,191193,197199,227229,239241,269271,281283,311313,347349,
%U 419421,431433,461463,521523,569571,599601,617619,641643,659661
%N Twin prime pairs concatenated in decimal representation.
%C a(n) mod 3 = 0 for n>1, proof: A007953(a(n)) = 2*A007953(A001359(n)+1) and A007953(A001359(n)) mod 3 = 2 for n>1, therefore A007953(a(n)) mod 3 = 0.
%H Reinhard Zumkeller, <a href="/A095958/b095958.txt">Table of n, a(n) for n = 1..10000</a>
%e 29 = A001359(5), 29 + 2 = 31 = A006512(5): a(5) = 2931.
%t concat[{a_,b_}]:=FromDigits[Flatten[IntegerDigits/@{a,b}]]; concat/@ Select[Partition[ Prime[ Range[150]],2,1],#[[2]]-#[[1]]==2&] (* _Harvey P. Dale_, Apr 20 2012 *)
%o (Haskell)
%o a095958 n = a095958_list !! (n-1)
%o a095958_list = f $ map show a077800_list :: [Integer] where
%o f (t:t':ts) = read (t ++ t') : f ts
%o -- _Reinhard Zumkeller_, Apr 20 2012
%o (Magma) [Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) ): n in [1..150 ]| NthPrime(n+1)-NthPrime(n) eq 2 ]; // _Marius A. Burtea_, Mar 21 2019
%Y Cf. A045533, A001359, A006512.
%Y Cf. A077800, subsequence of A045533.
%K nonn,base
%O 1,1
%A _Reinhard Zumkeller_, Jul 14 2004