login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let F(x) be the function such that F(F(x)) = arcsin(x), then F(x) = Sum_{n>=0} a(n)/2^n*x^(2n+1)/(2n+1)!.
3

%I #24 Jan 06 2023 10:30:23

%S 1,1,13,501,38617,4945385,944469221,250727790173,88106527550129,

%T 39555449833828817,22093952731139969213,15041143328788464370373,

%U 12273562321018687866908553,11833097802606125967312406457

%N Let F(x) be the function such that F(F(x)) = arcsin(x), then F(x) = Sum_{n>=0} a(n)/2^n*x^(2n+1)/(2n+1)!.

%C It appears that, if arcsin(x) is changed to arcsinh(x) in the definition, the sequence obtained is the same except alternating in sign: 1, -1, 13, -501, ... - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Jul 16 2009

%C a(35) is negative. - _Vaclav Kotesovec_, Jan 06 2023

%H Vaclav Kotesovec, <a href="/A095883/b095883.txt">Table of n, a(n) for n = 0..100</a>

%F a(n)=T(2*n+1,1)*2^n*(2*n+1)!, T(n,m)=if n=m then 1 else 1/2(Co(n,m)-sum(i=m+1..n-1, T(n,i)*T(i,m))), Co(n,m)=T121408(n,m)=(m!*(sum(k=0..n-m, (-1)^((k)/2)*(sum(i=0..k, (2^i*stirling1(m+i,m)* binomial(m+k-1,m+i-1))/(m+i)!))*binomial((n-2)/2,(n-m-k)/2)))*((-1)^(n-m)+1))/2. - _Vladimir Kruchinin_, Nov 11 2011

%e F(x) = x + (1/2)*x^3/3! + (13/2^2)*x^5/5! + (501/2^3)*x^7/7! + (38617/2^4)*x^9/9! + ...

%e Special values:

%e F(x)=Pi/6 at x=F(1/2) = 0.51137532057552418592144885355...

%e F(x)=Pi/4 at x=F(sqrt(2)/2) = 0.74287348600976...

%t a[n_] := Module[{A, B, F}, F = ArcSin[x] + O[x]^(2n+3); A = F; For[i = 0, i <= n, i++, B[x_] = InverseSeries[A, x] // Normal; A = (A + B[F])/2]; 2^n* (2n+1)!*SeriesCoefficient[A, {x, 0, 2n+1}]];

%t Table[a[n], {n, 0, 13}] (* _Jean-François Alcover_, Aug 16 2022, after PARI code *)

%o (PARI) {a(n)=local(A,B,F);F=asin(x+x*O(x^(2*n+1)));A=F; for(i=0,n,B=serreverse(A);A=(A+subst(B,x,F))/2);2^n*(2*n+1)!*polcoeff(A,2 *n+1,x)}

%Y Cf. A095882, A095884, A095885.

%K changed,sign

%O 0,3

%A _Paul D. Hanna_, Jun 10 2004