login
Expansion of g.f. x*(2+22*x+11*x^2)/((x-1)*(1+x)*(10*x^2-1)).
3

%I #20 Feb 22 2024 09:02:11

%S 0,2,22,33,242,343,2442,3443,24442,34443,244442,344443,2444442,

%T 3444443,24444442,34444443,244444442,344444443,2444444442,3444444443,

%U 24444444442,34444444443,244444444442,344444444443,2444444444442

%N Expansion of g.f. x*(2+22*x+11*x^2)/((x-1)*(1+x)*(10*x^2-1)).

%C Previous name: Palindromic sequence whose n-th term digits sum to 2n.

%H Paolo Xausa, <a href="/A094625/b094625.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,11,0,-10).

%F a(n) = 10^(n/2)*(31*sqrt(10)/180 + 11/9 - (31*sqrt(10)/180 - 11/9)*(-1)^n) - (-1)^n/2 - 35/18;

%F a(n) = A094623(n) + A094624(n).

%F G.f.: x*(2+22*x+11*x^2) / ( (x-1)*(1+x)*(10*x^2-1) ). - _R. J. Mathar_, Nov 27 2014

%F E.g.f.: (220*(cosh(sqrt(10)*x) - cosh(x)) + 31*sqrt(10)*sinh(sqrt(10)*x) - 130*sinh(x))/90. - _Stefano Spezia_, Feb 21 2024

%t LinearRecurrence[{0, 11, 0, -10}, {0, 2, 22, 33}, 30] (* _Paolo Xausa_, Feb 22 2024 *)

%Y Cf. A094623, A094624.

%K easy,nonn,base

%O 0,2

%A _Paul Barry_, May 15 2004