login
G.f.: Product((1+x^i)/(1-x^i),i=1..n-1)/(1-x^n), with n = 6.
0

%I #17 Jan 30 2018 18:57:37

%S 1,2,4,8,14,24,39,60,90,132,188,262,359,482,638,834,1074,1368,1725,

%T 2152,2662,3266,3974,4802,5765,6876,8154,9618,11284,13176,15317,17726,

%U 20432,23462,26840,30600,34773,39388,44484,50098,56264,63026,70427,78506,87314

%N G.f.: Product((1+x^i)/(1-x^i),i=1..n-1)/(1-x^n), with n = 6.

%C Poincaré series [or Poincare series] (or Molien series) for H^*(O_6(q); F_2).

%D A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,3,-6,7,-6,6,-6,7,-6,3,-3,3,-1).

%F G.f.: (x^4-x^3+x^2-x+1)*(x^4+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)). [_Colin Barker_, Jan 31 2013]

%t LinearRecurrence[{3,-3,3,-6,7,-6,6,-6,7,-6,3,-3,3,-1},{1,2,4,8,14,24,39,60,90,132,188,262,359,482},50] (* _Harvey P. Dale_, Oct 25 2017 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Mar 18 2004