login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091671 Decimal expansion of (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi^4). 3

%I

%S 4,4,8,2,2,0,3,9,4,3,8,8,3,8,1,4,3,2,1,1,6,3,8,5,4,5,0,0,1,7,4,8,5,2,

%T 4,9,5,6,9,3,9,2,2,0,1,7,0,8,1,2,0,7,3,0,4,9,1,7,4,1,6,9,9,3,5,3,2,7,

%U 9,8,3,9,8,9,0,3,0,6,8,0,1,5,7,1,1,6,8,8,4,9,6,1,3,8,0,3,9,0,6,1,1,8

%N Decimal expansion of (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi^4).

%C Watson's second triple integral.

%H G. C. Greubel, <a href="/A091671/b091671.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WatsonsTripleIntegrals.html">Watson's Triple Integrals</a>

%e 0.448220394388381432116385450017485249569392201708120730....

%t RealDigits[(3*Gamma[1/3]^6)/(16*2^(2/3)*Pi^4), 10, 100][[1]] (* _G. C. Greubel_, Oct 26 2018 *)

%o (PARI) default(realprecision, 100); (3*gamma(1/3)^6)/(16*2^(2/3)*Pi^4) \\ _G. C. Greubel_, Oct 26 2018

%o (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi(R)^4); // _G. C. Greubel_, Oct 26 2018

%Y Cf. A091670, A091672.

%K nonn,cons

%O 0,1

%A _Eric W. Weisstein_, Jan 27 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 16:31 EDT 2021. Contains 347598 sequences. (Running on oeis4.)