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The Multiply Perfect Numbers Page
Introduction

Let o(n) be the number theoretic function which denotes the sum of all divisors of a natural number n. If o(n) is an integral multiply of n, then n is denoted as a multiply
perfect number or k-fold perfect number (also called multiperfect number or pluperfect number). Call o(n)/n abundancy (also called index or multiplicity) of n. A
multiply perfect number is called proper if its abundancy is > 2. For example consider the divisors of the number 120:
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120=o(120)=o(2^3*3*5)=o(2^3)*o(3)*o(5)=(1+2+4+8)*(1+3)*(1+5)=15*4*6=360=3*120.
Hence 120 is a 3-fold perfect number.

Status

Abundancy Count When last number was discovered Which was last? Are all discovered? Estimated total number
1 1 - - yes and proved 1
2 50 2017-12-26 18.4889706 no, there are infinitely many ∞
3 6 <= 1643 3.2049844 yes 6
4 36 <= 1929 4.3351682 yes 36
5 65 <= 1990 5.1744360 yes 65
6 245 1993-05-?? 5.6720844 yes 245
7 516 1994-01-09 5.9403364 almost surely yes ~ 515
8 1135 2017-05-20 6.3396518 probably yes ~ 1140
9 2095 2013-01-10 7.2802453 no ~ 2200

10 1164 2013-01-03 7.2933919 no ~ 4500
11 1 2001-03-13 8.3870050 no ~ 10000

In column "Which was last?" the identifier ln(ln(MPN)) is given for those which were verfied by me. I checked these numbers only for those MPNs reported before 2017-
05-23.
We have a total of 5311+3 (of which 5263 have an abundancy > 2) known and claimed MPNs until 2018-01-07. 
It is extremly probable, that all proper MPNs with abundancy <= 7 are discovered.

Data

Richard Schroeppel's archive of 2094 MPNs built 1995-12-13 . 
The collection of 5311 MPNs from 2014-01-01(gziped to 918 kB) sorted by abundancy and magnitude. It is grown out of Rich's database --- thanks ---, and transformed into
a new format, such that each multiply perfect number allocates one line with all its additional informations in the form:
M|ln_ln|rich_id,deep|dpf,tpf|date|name|number|comment

| is a separator character between the fields and is not allowed inside any field. Except of the last field, comment, all other fields are obligatory, but they can be empty,
e.g. if the discovery date or person is unknown.
M indicates the abundancy of the number as a lower case letter, such that the letters a,b,c,d,... correspond to the abundancies 1,2,3,4, ... .
ln_ln gives the decimal value of logeloge of the number and is rounded to 7 decimal places after the period. This serves now as a unique identifier to each number,
also.
rich_id is Rich's unique identifier for this number which encodes the abundancy appended by the exponents of at most the three primes 2,3,5. These exponents are
encoded alternatingly in a 26-base system made up of the letters a-z und a 10-base system made up of the digits 0-9. The letter @ is used if a prime exponent is zero.
In the case that this identifier is still ambigious, it is appended by a lower case letter which serves as a counter.
R. Sorli likes to avoid this further counter and recommends to use not only the primes 2,3,5, but as less as further necessary for unequivocality using Rich's scheme of
alternatingly letters and digits for encoding the corresponding exponents (at most up to and including 23 is sufficient until now).
deep indicates the minimal number of successive primes (starting with 2) whose exponents must be given to reconstruct the MPN straight forward (without knowing
its abundancy).
dpf indicates the number of different prime factors.
tpf indicates the number of total prime factors.
date gives the year of the first (or independent) discovery in the form YYYY-MM-DD as long as month and day (and year) is known.
name gives the name of the discoverer. Like in the date field, multiple independent discoveries are separated by commas.
number is given in its prime factorization of the form:base1^expo1.base2^expo2.base3^expo3. .... where the basei indicates a prime of an ascending list of
primes and the expoi indicates the corresponding nonzero exponent; an exponent value of 1 is omitted together with its leading ^. In the case of the larger 2-perfect
numbers, the odd prime (2^??-1) in the factorization is given as M?? to save space with ?? giving the Mersenne Prime exponent as decimal number.

Search this database of 5311 MPNs
Each search-pattern matches literally, except the wild-characters *,?,!,$ which mean:
  *  -- arbitrary, maybe empty, sequence of characters
  ?  -- exactly one character
  !  -- begin of record
  $  -- end of record.
Hint: orient on the field separator | or the comma in each record to get easier what you want.

Pattern  to search.
output fields of records 1  - 9  

Clear  Look up

And a further list of multiply perfect numbers sorted only by their factorizations (built from the 5311 MPNs of the master list and gziped 200 kB). It has each line cut down
to 120 columns and no discovery information or comments are given. Rich's out-dated indentifier is omitted, but a log10(MPN) is given for traditional reasons.
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Finally, here are the (email-extracted and edited) 2 claimed new (since the database update) found MPNs which I irregularly append (last change: 2017-05-23). To verify
these numbers, three steps must be taken: 1) verify for each number n given in its prime factorization that all factors are really prime numbers, 2) compute o(n) which
envolves the factorization of large numbers and then check n's claimed abundancy 3) and lastly test whether n is really new.

Algebraic Transformations

Let o(n*X)=k*n*X and o(n*Y)=k*n*Y, with gcd(n,X)=1=gcd(n,Y), i.e. they have no primes in common. Then yields: if n*X is a k-perfect number then n*Y is one, too. Such
a pair (X,Y) is denoted as a substitution. To avoid trivial substitutions, one demands further that prime-powers whose prime occuring in both components have different
exponents. Call the size of a substitution the number of different primes involved. Below are some components listed for pairs (A,B), (C,D), (E,F), (G,H), (I,J),
(K,L), (M,N), (P,Q), (R,S), (T,U) and (V,W):

A = 19^2.127^1.151^0.911^0 
B = 19^4.127^0.151^1.911^1 
size(A,B) = 4 , k = 4,5,6,7,8,9 
[occurs 257 times for the known MPNs] 
 
C = 23^1.37^3.73^1.79^0.137^2 
D = 23^2.37^1.73^0.79^1.137^1 
size(C,D) = 5 , k = 6,7,8,9 
[occurs 21 times for the known MPNs] 
 
E = 13^1.31^2.61^1.83^1.97^0.331^1 
F = 13^2.31^1.61^2.83^0.97^1.331^0 
size(E,F) = 6 , k = 6,7,8 
[occurs 31 times for the known MPNs] 
 
G = 3^10.107^1.137^0.547^0.1093^0.3851^1 
H = 3^6.107^0.137^1.547^1.1093^1.3851^0 
size(G,H) = 6 , k = 4,5,6 
[occurs 31 times for the known MPNs] 
 
I = 5^0 
J = 5^1 
size(I,J) = 1 , k = 5 
[occurs 20 times for the known MPNs] 
 
K = 7^5.17^1.37^1.43^1.67^0.307^0.1063^0 
L = 7^8.17^2.37^2.43^0.67^1.307^1.1063^1 
size(K,L) = 7 , k = 7 
[occurs 9 times for the known MPNs] 
 
M = 7^4.13^4.31^1.43^1.61^1.79^0.97^0.157^0.631^0.30941^1 
N = 7^9.13^5.31^0.43^2.61^2.79^2.97^1.157^1.631^1.30941^0 
size(M,N) = 10 , k = 5,6,7,8 
[occurs 4 times for the known MPNs] 
 
P = 2^38.53^1.59^0.157^0.229^1.8191^1.43331^0.121369^1.3033169^0.715827883^0.2147483647^0 
Q = 2^61.53^0.59^1.157^1.229^0.8191^0.43331^1.121369^0.3033169^1.715827883^1.2147483647^1 
size(P,Q) = 11 , k = 5,6 
[occurs 9 times for the known MPNs] 
 
R = 13^14.139^0.157^1.181^1.191^2.199^1.229^1.397^1.827^0.1163^1.4651^1.8269^0.14197^0.28393^0.30941^1.40493^1.161971^1 
S = 13^11.139^1.157^2.181^2.191^1.199^0.229^2.397^0.827^1.1163^0.4651^0.8269^1.14197^1.28393^1.30941^0.40493^0.161971^0 
size(R,S) = 17 , k = 9 
[occurs 1 time for the known MPNs] 
 
T = 3^4.11^3.13^1 
U = 3^5.11^1.13^2 
size(T,U) = 3 , k = 6 
[occurs 8 times for the known MPNs] 
 
V = 5^2.7^2.11^1.31^1.71^0 
W = 5^4.7^3.11^2.31^0.71^1 
size(V,W) = 5 , k = 6 
[occurs 8 times for the known MPNs] 

They are as more important, as fewer primes are involved in such a substitution. As larger the smallest prime in such a pair is, as more usefull it is, too. On the other hand, as
smaller the quotient of the number of different primes in n to the size of the substitution becomes, as more worthless such a substitution becomes for this n.

Historical Development of known MPNs

period / year Antiquity Middle Ages < 1910 < 1915 < 1930 < 1955 < 1980 < 1990 1991 1992 1993 1994 1995
known MPNs 5 35 47 235 347 556 596 611 713 1179 1821 1983 2101
increament 5 30 12 188 112 209 40 15 102 466 642 162 118

period 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
known MPNs 2335 3051 3259 3464 4501 4997 5040 5050 5147 5189 5222 5245 5271 5287 5301 5303 5307 5311
increament 234 716 208 205 1037 496 43 10 97 42 33 23 26 16 14 2 4 4

The sign < in the row period means "up to and including" the given year.
The value in the row increament indicates the new known MPNs compared to the previous time-period.

Now a list of the discoverer names follows according to Rich Schroeppel (report him, if you think you aren't credited sufficiently):
Discoverer count period Discoverer count period

Armengaud&Woltman&et.al. 1* 1996 Brown 78  1954
Cameron&Woltman&Kurowski&et.al. 1* 2001 Carmichael 98  1907-1911
Cataldi 2* 1588 Clarkson&Woltman&Kurowski&et.al. 1* 1998
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codex-Lat.-Monac.- 1* 1456 Colquitt&Welsh 1* 1988
Cooper&Boone&Woltman&Kurowski&et.al. 2* 2005-2006 Cooper&Woltman&Kurowski&et.al. 1* 2013
Cunningham 3  1902 Descartes 9  1638-1639
Dokshitzer&Vasyunin 1  1993 Euclid 4* -275
Euler 1* 1772 Elvenich&Woltman&Kurowski&et.al. 1* 2008
Fermat 11? 1636-1643 Findley&Woltman&Kurowski&et.al. 1* 2004
Flammenkamp 137  1993-2000 Flammenkamp&Woltman 344  2000-2001
Franqui&Garcia 135  1953-1954 Freniclei 3  1638
Gage&Slowinski 3* 1992-1996 Gillies 3* 1963
Gretton 123  1990-1993 Gretton&Schroeppel 5  1991-1992
Hajratwala&Woltman&Kurowski&et.al. 1* 1999 Harrison&Moxham 3  2000
Helenius 1261  1992-1997 Helenius&Schroeppel 16  1993
Hurwitz&Selfridge 2* 1961 in-Mersenne-epoch 4  1639-1643
Jumeau 1  1638 Kapek&Moxham 1  2000
Lehmer 5  1901 Lucas 1* 1876
Martinson&Moxham 1  2000 Mason 89  1911
Moxham 1006  1995-2001 Nelson&Slowinski 1* 1979
Nickel&Noll 1* 1978 Noll 1* 1979
Nowak&Woltman&Kurowski&et.al. 1* 2005 Perrier&Woltman 38  2000
Pervouchine 1* 1883 Poulet 145  1929,1954
Powers 2* 1911-1914 Pythagoras 1* -500
Recorde 1  1557 Riesel 1* 1957
Roberts&Moxham 2  1997 Robinson 5* 1952
Schroeppel 7  1983-1991 Shafer&Woltman&Kurowski&et.al. 1* 2003
Slowinski 3* 1982-1985 Smith&Woltman&Kurowski&et.al. 1* 2008
Sorli&Moxham 27  1997-1998 Sorli&Woltman 9  2000-2001
Spence&Woltman&et.al. 1* 1997 Strindmo&Woltman&Kurowski&et.al. 1* 2009
Tuckerman 1* 1971 Whiteside&Moxham 2  1999
Woltman 1799  1997-2013 Yoshitake 17  1974-1993

The column 'count' counts the discoveries until 2013-12-31 and an asterik * indicates that this person has "only" discovered 2-perfect number(s).

Abundancy First discovered MPN Is it smallest? Date Discoverer
1 1 yes ancient -
2 6 yes ancient -
3 120 yes ancient -
4 30240 yes ~ 1638 R. Descartes
5 14182439040 yes ~ 1638 R. Descartes
6 34111227434420791224041472000 no 1643 P. Fermat
7 6.9545266398342727... *10^70 no 1902 A. J. C. Cunningham
8 2.34111439263306338... *10^161 no 1929 P. Poulet
9 7.9842491755534198... *10^465 no 1992-04-15 F. W. Helenius

10 2.86879876441793479... *10^923 no 1997-05-13 R. M. Sorli
11 2.51850413483992918... *10^1906 no 2001-03-13 G. F. Woltman

Various Records

The factorizations of smallest -- for k >= 9 "only" smallest known -- k-perfect number for fixed abundancy are:

Abundancy 1:
1
Abundancy 2:
2 3
Abundancy 3:
2^3 3 5
Abundancy 4:
2^5 3^3 5 7
Abundancy 5:
2^7 3^4 5 7 11^2 17 19
Abundancy 6:
2^15 3^5 5^2 7^2 11 13 17 19 31 43 257
Abundancy 7:
2^32 3^11 5^4 7^5 11^2 13^2 17 19^3 23 31 37 43 61 71 73 89 181 2141 599479
Abundancy 8:
2^62 3^15 5^9 7^7 11^3 13^3 17^2 19 23 29 31^2 37 41 43 53 61^2 71^2 73 83 89 97^2 127 193 283 307 317 331 337 487 521^2 601 1201 1279 2557 3169 5113
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92737 649657
Abundancy 9:
2^104 3^43 5^9 7^12 11^6 13^4 17 19^4 23^2 29 31^4 37^3 41^2 43^2 47^2 53 59 61 67 71^3 73 79^2 83 89 97 103^2 107 127 131^2 137^2 151^2 191 211 241 331
...
Abundancy 10:
2^175 3^69 5^29 7^18 11^19 13^8 17^9 19^7 23^9 29^3 31^8 37^2 41^4 43^4 47^4 53^3 59 61^5 67^4 71^4 73^2 79 83 89 97 101^3 103^2 107^2 109 113 127^2 ...
Abundancy 11:
2^468 3^140 5^66 7^49 11^40 13^31 17^11 19^12 23^9 29^7 31^11 37^8 41^5 43^3 47^3 53^4 59^3 61^2 67^4 71^4 73^3 79 83^2 89 97^4 101^4 103^3 109^3 ...

Abund Smallest value Largest value Lowest 2-power Highest 2-power Largest eff. expo. Fewest factors * Most factors *
2 6 (0.5831981) 10^34850339.2 (18.2006059) 1 (0.5831981) 57885160 (18.2006059) 0 (0.5831981) 2 (0.5831981) 57885161 (18.2006059)
3 120 (1.5660066) 10^10.469 (3.2049844) 3 (1.5660066) 14 (3.2049844) 7 (3.2049844) 5 (1.5660066) 19 (3.2049844)
4 30240 (2.3337853) 10^45.204 (4.6452114) 2 (2.6806218) 37 (4.5312242) 17 (4.5312242) 8 (2.3415138) 57 (4.6365489)
5 10^10.148 (3.1516786) 10^100.276 (5.4419551) 7 (3.1516786) 61 (5.0442101) 45 (5.1777077) 17 (3.1516786) 103 (5.3046236)
6 10^20.189 (3.8391453) 10^192.162 (6.0923690) 15 (4.0050961) 92 (6.0923690) 79 (6.0362173) 31 (3.8391453) 164 (6.0923690)
7 10^56.150 (4.8620623) 10^312.074 (6.5772722) 29 (5.2987825) 177 (6.5408889) 108 (6.4271649) 71 (4.8620623) 307 (6.5528603)
8 10^132.917 (5.7237604) 10^613.291 (7.2528723) 47 (5.7578915) 253 (7.1699823) 156 (7.2528723) 137 (5.7237604) 466 (7.1485402)
9 10^286.749 (6.4926404) 10^1165.883 (7.8952666) 99 (6.6259527) 380 (7.8522986) 283 (7.7478296) 257 (6.4926404) 747 (7.8522986)

10 10^638.652 (7.2933919) 10^1877.645 (8.3718042) 175 (7.2933919) 534 (8.3718042) 434 (8.2500454) 492 (7.2933919) 1172 (8.3718042)
11 10^1906.401 (8.3870050) 10^1906.401 (8.3870050) 468 (8.3870050) 468 (8.3870050) 469 (8.3870050) 1139 (8.3870050) 1139 (8.3870050)

Italic printed values perhaps change in the future.
The identifiers for each MPN are given in parenthesis.
(*) The word factors means prime-factors.

Discovery dates of proper Multiply Perfect Numbers
Abund First MPN Smallest MPN Largest MPN Latest MPN

3 ancient (1.5660066) ancient (1.5660066) 1643 (3.2049844) 1643 (3.2049844)
4 1638 (2.3337853) 1638 (2.3337853) 1911 (4.6452114) 1929 (4.3351682)
5 1638 (3.1516786) 1638 (3.1516786) 1911 (5.4419551) 1990 (5.1744360)
6 1643 (4.1850902) 1907 (3.8391453) 1992 (6.0923690) 1993-05-?? (5.6720844)
7 1902 (5.0944883) 1911 (4.8620623) 1993 (6.5772722) 1994-01-09 (5.9403364)
8 1929 (5.9177287) 1990 (5.7237604) 1996-04-23 (7.2528723) 2017-05-20 (6.3396518)
9 1992-04-15 (6.9780083) 1995-12-06 (6.4926404) 2001-01-11 (7.8952666) 2013-01-10 (7.2802453)

10 1997-05-13 (7.6621574) 2013-01-03 (7.2933919) 2001-01-28 (8.3718042) 2013-01-03 (7.2933919)
11 2001-03-13 (8.3870050) 2001-03-13 (8.3870050) 2001-03-13 (8.3870050) 2001-03-13 (8.3870050)

Italic printed values perhaps change in the future.

Old conjectures

The only odd multiply perfect number is 1. Consequently each (2-fold) perfect number is even (claimed already in the Middle Ages).
There are infinitely many perfect, i.e. 2-fold multiply perfect, numbers.
For each fixed abundancy > 2, there are only finitely many multiply perfect numbers.
For each fixed prime power, there is at least one MPN which has exactly this prime power in its prime factorization (lowest two-power-exponents for to-discover
MPNs are 331, 335, 336, ...).

Distribution of the 5311 (until 2013-12-31) known Multiply Perfect Numbers



6/4/2020 Multiply Perfect Numbers

wwwhomes.uni-bielefeld.de/achim/mpn.html 5/6

 

If the number of MPNs up to a given limit x is proportional to ln(x), then the density of the MPNs should be proportional to 1/x. And a further picture to visualize the
density of the known MPNs. In first approximation it may be a Poisson-distribution. You guess that surely there are missing MPNs at last at the currently known 4000th
MPN, but also highly probable earlier. Finally a best linear fit for the smallest 3600 known MPNs except the first 100 MPNs to avoid 'start-effects' was done on a
logarithmic scale. For these 3500 numbers this least-quadratic error approximation results a correlation coefficient of 0.99815 with # MPN ~ 2.2328ln(x)-48.3655. 
Richard Schroeppel stated that he constructed all MPNs < 1070 in the eighties of the twenty-century (but probably only 1990), i.e. he proved that there exist exactly 258
MPNs smaller than 1070 -- and besides showed that there are no odd MPNs < 1090 except 1.  In March 2008 Achim Flammenkamp finally constructed all MPNs < e350

by an exhaustive tree-search, i.e. proved that there are no further but the 730 known MPNs. Here is a small paper presenting the theoretical and practical background to this
computation.

The Two-Power exponent of a MPN

And here is a false color diagram for the distribution of these MPNs

Let us introduce Fred Helenius' notion of the effective exponent. The prime p=2 is special compared to other primes, because p-1 has only the trivial divisor 1. A
consequence of this fact is, only if p equals 2, then numbers of the form pn-1 could be prime. Assume a fixed MPN m has in its prime factorization the two-power exponent
k. This means that o(m) has a factor 2k+1-1. Depending on k this factor may have some prime divisors of the form 2n-1. Because we are considering a MPN, o(2n-1) = 2n

must be also a factor of this MPN itself, if 2n-1 occurs exactly onetime! Hence the original prime-power 2k may produce immediately further two-powers. Or put it in other
words: only the `remainder' of this exponent k must be produced by other prime-powers. So, the exponent is effectively reduced in consideration to the to-be-generated two-
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power factors by other prime-powers. Primes of the form 2n-1 are called Mersenne Primes and are known up to high values of n. Thus we have to check which Mersenne
Prime 2n-1 divide a given 2k+1-1 exactly onetimes. Subtracting k+1 by such Mersenne Prime exponents n gives the effective exponent of k. There is a small blemish in this
model: small primes of the form q=2n-1 may as well be produced by other prime-powers (than two-powers) of a MPN, such that the exponent of q is not 1 in the
factorization of the MPN, but larger. Hence we have probably overestimated the correction of the two-power exponent a bit.
The two-power exponent k of a (2-fold) perfect number has always an effective exponent of 0. For such an effective exponent of 0, there seems to exist only the
corresponding (2-fold) MPN except in the case k equals 2. If k = in-1 with n the exponent of a Mersenne Prime and i a small number, the effective exponent is at most n(i-
1), roughly 1-1/i of the given exponent k. Such exponents k are typically the largest two-power exponents for which a MPN for a fixed proper abundancy exists: 61=2*31-1,
92=3*31-1, 177=2*89-1, 253=2*127-1, 320=3*107-1,380=3*127-1.
Finally, for a given two-power exponent k the effort to compute a MPN with an even factor of 2k seems more related to its effective exponent than to k --- this is heuristically
convincing and seems likely to be the reason this quantity was invented --- and lastly the distribution of the prime-exponents of a `typical' MPN seems proportional to the
effective exponent than to the two-power exponent.

References collected by Rich Schroeppel

R. D. Carmichael & T. E. Mason, Notes on Multiply Perfect Numbers, Including a Table of 204 New Ones and the 47 Others Previously Published, Proc. Indiana
Academy of Science, 1911 p257-270.
Leonard Eugene Dickson, History of the Theory of Numbers, 1919, v.1 p33-38.
Paul Poulet, La Chasse Aux Nombres, Fascicule I, Bruxelles, 1929, p9-27.
Benito Franqui & Mariano Garcia, Some New Multiply Perfect Numbers, American Math Monthly 1953 p459-462.
Alan L. Brown, Multiperfect Numbers, Scripta Mathematica 1954 p103-106.
Benito Franqui & Mariano Garcia, 57 New Multiply Perfect Numbers, Scripta Mathematica 1954 p169-171.
Alan L. Brown, Multiperfect Numbers - Cousins of the Perfect Numbers - No. 1, Recreational Mathematics Magazine #14, Jan/Feb 1964.
Motoji Yoshitake, Abundant Numbers, Sum of Whose Divisors are an Integer Times the Number, Sugaku Seminar, v.18 n.3 p50-55, 1979.
private communications from M. Garcia, Stephen Gretton, M. Yoshitake, Fred Helenius, and Achim Flammenkamp.

Further Infos

Fred Helenius's Multiperfect numbers
Ron Sorli's Thesis: Algorithms in the Study of Multiperfect and Odd Perfect Numbers 2003, Sydney, Australia and its first 9 pages .
A gziped-tar archive containing the sigma-chain database and its C-sourcecode library (486kB) to access and maintain it ( version 4.1d).
Eric Weisstein's explanations of MPNs. .
The haunt for improper Multiperfect Numbers :)
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