Golay-Littlewood Problem

STEVEN FINCH

March 5, 2014

Two independent streams of investigation, one from digital communications engineering and the other from complex analysis on the unit circle, come together in this essay [1, 2, 3, 4, 5].

0.1. Merit Factor of Binary Sequences. Given a sequence \(a_0, a_1, a_2, \ldots, a_n \) where each \(a_j = \pm 1 \), define the \(k^{th} \) **acyclic autocorrelation** to be

\[
c_k = \sum_{j=0}^{n-k} a_j a_{j+k} \quad \text{for } 0 \leq k \leq n; \quad c_k = c_{-k} \quad \text{for } -n \leq k < 0
\]

and the **merit factor** to be the ratio

\[
F = \frac{c_0^2}{\sum_{k \neq 0} c_k^2} = \frac{(n + 1)^2}{2 \sum_{k=1}^{n} c_k^2}.
\]

Identifying binary sequences \(\{a_j\} \) whose autocorrelations \(\{c_k\} \) are jointly as small as possible, for fixed \(n \), is important for engineering design purposes. The “best” sequences are those with the largest merit factor \(F \). As an example, the sequence 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 has the largest \(F \) value 169/12 = 14.0833... among all such with \(n = 12 \). As another example, the sequence 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 has the largest \(F \) value 121/10 = 12.1 among all such with \(n = 10 \). No other merit factor exceeding 10 is known for any \(n \); a proof that 169/12 and 121/10 are the maximum possible values for \(F \) is still open.

0.2. \(L_4 \) Norm of Polynomials on Unit Circle. Given a polynomial of complex variable \(z \):

\[
f(z) = \sum_{j=0}^{n} a_j z^j
\]

the \(L_p \) norm of \(f \) over the unit circle for \(p \geq 1 \) is

\[
\|f\|_p = \left[\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^p \, d\theta \right]^{1/p}.
\]

\(^0\)Copyright © 2014 by Steven R. Finch. All rights reserved.
Since the complex conjugate \bar{z} is equal to $1/z$ and all polynomial coefficients a_j are real, we have $f(z) = f(\bar{z}) = f(1/z)$. Hence
\[|f(z)|^2 = f(z) f\left(\frac{1}{z}\right) = c_0 + \sum_{k \neq 0} c_k z^k \]
and, after integrating, $\|f\|_2^2 = c_0 = n + 1$ because each $a_j = \pm 1$. Also, we have
\[|f(z)|^4 = f(z)^2 f\left(\frac{1}{z}\right)^2 = \sum_k c_k^2 + \sum_{k+\ell \neq 0} c_k c_\ell z^{k+\ell} \]
and, after integrating, $\|f\|_4^4 = \sum c_k^2 = (n + 1)^2(1 + 1/F)$. Thus Littlewood’s question [6, 7] about how closely the ratio $\|f\|_4^4 / \|f\|_2^2$ can approach 1 as $n \to \infty$ translates into Golay’s question [8, 9, 10, 11, 12, 13] about the limit supremum of F.

0.3. Bounds on Asymptotic Behavior

On the one hand, let $\xi = 1.157677...$ denote the smallest zero of $27x^3 - 498x^2 + 1164x - 722$. Jedwab, Katz & Schmidt [14] proved that there is a Littlewood polynomial sequence $\{f_n\}$ such that $\deg(f_n) \to \infty$ and
\[\frac{\|f_n\|_4^4}{\|f_n\|_2^2} \to 4\sqrt{\xi} = 1.037282... \]
as $n \to \infty$. As a consequence,
\[\limsup_{n \to \infty} F_n \geq \eta = \frac{1}{\xi - 1} = 6.342061.... \]
The preceding best result, namely $\xi = 7/6 = 1.16...$ ($\eta = 6$), had remained in place for more than twenty years [15, 16]. Recent numerical computations indicate that $\xi = 1.1553...$ ($\eta = 6.4382...$) is feasible. We might have to wait a long time for rigorous verification of this result because, in the words of [17], “inclusion of the steep descent algorithm ... would seem to make a proof much more difficult”. Theory lags considerably behind experiment here: there is good evidence that $\eta > 8$ or even $\eta > 8.5$. Merit factors exceeding 9 are not uncommon for sequence lengths ≈ 100, but it is difficult to project whether such extremities will continue to grow slowly or level off [18, 19].

On the other hand, no one has proved that the limit supremum of F is necessarily finite. (An argument in [11, 20] that it is approximately 12.32 is only heuristic.) This would be good to see someday.

Imagine the set of all sequences of length $n + 1$, endowed with the uniform distribution. Draw one such sequence and compute F. The mean value of $1/F$ is exactly
[21, 22]

\[E \left(\frac{1}{F} \right) = \frac{n}{n+1} \to 1 \]
as \(n \to \infty \). An exact expression for \(\text{Var}(1/F) \) is not available, but it is \(O(1/n) \) according to [4]. Thus most sequences should have merit factor close to 1 [23]. What else can be said about the distribution of \(1/F \) or, indeed, of \(F \) itself?

0.4. Addendum. Choi [30] supplemented the result \(E (\|f\|_4^4) = (n + 1)(2n + 1) \) with a new one:

\[\text{Var} (\|f\|_4^4) = \frac{8}{3} (n + 1) (2n^2 - 2n + 3) - 8 \left[\frac{n^2 + 2n + 2}{2} \right] \]
giving a formula for \(\text{Var}(1/F) \) as a corollary. Golay’s constant is, to higher precision,

\[12.3247958363... = \frac{2y^2}{2y - \ln(2y + 1)} \]
where \(y \) is the unique positive solution of the equation \((y+1) \ln(2y+1) = 2(1+\ln(2))y \) [20].

References

[6] J. E. Littlewood, On polynomials $\sum^n z^m, \sum^n e^{\alpha_m} z_m, z = e^{i\beta}$, J. London Math. Soc. 41 (1966) 367–376; MR0196043 (33 #4237).

