%I #29 Jan 30 2020 21:29:15
%S 1,1,7,19,109,421,2251,10207,53593,263305,1385263,7109323,37728901,
%T 198723565,1065245299,5706564247,30879236017,167409942289,
%U 913397457367,4996676997379,27455383898269,151263170713909,836158046041243
%N Expansion of (1 - x - sqrt(1 - 2*x - 23*x^2))/(12*x^2).
%C Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(1,-1), where the U steps come in 6 colors (i.e. Motzkin paths with the up steps in 6 colors), or where the U steps come in 2 colors and the D steps in 3 (or vice versa). Series reversion of x/(1+x+6x^2). - _Paul Barry_, May 16 2005
%H Vincenzo Librandi, <a href="/A091149/b091149.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: 2/(1 - x + sqrt(1 - 2*x - 23*x^2)).
%F a(n) = A014435(n+1)/6.
%F a(n) = Sum_{k=0..n} binomial(n, k)*6^(k/2)*C(k/2)*(1 + (-1)^k)/2 with C(n)=A000108(n).
%F a(n) = Sum_{k=0..n} C(n, 2*k)*C(k)*6^k. - _Paul Barry_, May 16 2005
%F D-finite with recurrence: (n+2)*a(n) - (2*n+1)*a(n-1) + 23*(1-n)*a(n-2) = 0. - _R. J. Mathar_, Sep 26 2012
%F a(n) ~ sqrt(9/4 + 73/(24*sqrt(6)))/(n^(3/2)*sqrt(Pi))*(1 + 2*sqrt(6))^n. - _Vaclav Kotesovec_, Sep 29 2012
%F G.f.: 1/(1 - x - 6*x^2/(1 - x - 6*x^2/(1 - x - 6*x^2/(1 - x - 6*x^2/(1 - ....))))), a continued fraction. - _Ilya Gutkovskiy_, May 26 2017
%t CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 23 x^2]) / (12 x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, May 10 2013 *)
%o (PARI) x='x+O('x^66); Vec((1-x-sqrt(1-2*x-23*x^2))/(12*x^2)) \\ _Joerg Arndt_, May 11 2013
%Y Cf. A217275.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Dec 22 2003