login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090732 a(n) = 24a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 24. 3

%I

%S 2,24,574,13752,329474,7893624,189117502,4530926424,108553116674,

%T 2600743873752,62309299853374,1492822452607224,35765429562720002,

%U 856877487052672824,20529294259701427774,491846184745781593752

%N a(n) = 24a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 24.

%H Indranil Ghosh, <a href="/A090732/b090732.txt">Table of n, a(n) for n = 0..723</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (24,-1).

%F a(n) = p^n + q^n, where p = 12 + sqrt(143) and q = 12 - sqrt(143). - _Tanya Khovanova_, Feb 06 2007

%F G.f.: (2-24*x)/(1-24*x+x^2). - _Philippe Deléham_, Nov 02 2008

%F a(n)=2*A077424(n). - _R. J. Mathar_, Sep 27 2014

%t a[0] = 2; a[1] = 24; a[n_] := 24a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* _Robert G. Wilson v_, Jan 30 2004 *)

%t LinearRecurrence[{24,-1},{2,24},30] (* _Harvey P. Dale_, Sep 19 2011 *)

%o (Sage) [lucas_number2(n,24,1) for n in range(0,20)] # _Zerinvary Lajos_, Jun 26 2008

%o (PARI) a(n)=([0,1;-1,24]^n*[2;24])[1,1] \\ _Charles R Greathouse IV_, Feb 07 2017

%Y Cf. A056949, A077424.

%K easy,nonn

%O 0,1

%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 15:33 EST 2020. Contains 338683 sequences. (Running on oeis4.)