login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes arising in A090525, or 0 if A090525(n) = 0.
4

%I #12 Mar 02 2023 06:19:09

%S 2,13,23,347,4241,41177,1677721,9224297,769230769,17831979413,

%T 156422814881,43267872370321,317485909301657,10680338789777057,

%U 348051774975651917,23635436053895336119,230095953656704898101

%N Primes arising in A090525, or 0 if A090525(n) = 0.

%C Conjecture: No term is zero.

%C Conjecture is true: see A090525. - _Robert Israel_, Mar 02 2023

%H Robert Israel, <a href="/A090526/b090526.txt">Table of n, a(n) for n = 2..386</a>

%F a(n) = floor(n^n/A090525(n)). - _Robert Israel_, Mar 02 2023

%p f:= proc(n) local t,k,s;

%p t:= n^n;

%p for k from 2 do s:= floor(t/k); if isprime(s) then return s fi od

%p end proc:

%p map(f, [$2..100]); # _Robert Israel_, Mar 02 2023

%t Do[p = n^n; i = 2; While[ !PrimeQ[Floor[p/i]], i++ ]; Print[Floor[p/i]], {n, 2, 30}] (* _Ryan Propper_, Aug 02 2005 *)

%Y Cf. A090525, A090527, A090528.

%K nonn

%O 2,1

%A _Amarnath Murthy_, Dec 07 2003

%E More terms from _Ryan Propper_, Aug 02 2005

%E Offset corrected by _Robert Israel_, Mar 02 2023