Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #98 May 08 2021 23:00:16
%S 6,9,10,12,15,16,18,21,22,24,25,27,28,30,33,34,35,36,39,40,42,45,46,
%T 48,49,51,52,54,55,57,58,60,63,64,65,66,69,70,72,75,76,78,81,82,84,85,
%U 87,88,90,91,92,93,94,95,96,99,100,102,105,106,108,111,112,114,115,117,118
%N Regular figurative or polygonal numbers of order greater than 2.
%C The sorted k-gonal numbers of order greater than 2. If one were to include either the rank 2 or the 2-gonal numbers, then every number would appear.
%C Number of terms less than or equal to 10^k for k = 1,2,3,...: 3, 57, 622, 6357, 63889, 639946, 6402325, 64032121, 640349979, 6403587409, 64036148166, 640362343980, ..., . - _Robert G. Wilson v_, May 29 2014
%C The n-th k-gonal number is 1 + k*n(n-1)/2 - (n-1)^2 = A057145(k,n).
%C For all squares (A001248) of primes p >= 5 at least one a(n) exists with p^2 = a(n) + 1. Thus the subset P_s(3) of rank 3 only is sufficient. Proof: For p >= 5, p^2 == 1 (mod {3,4,6,8,12,24}) and also P_s(3) + 1 = 3*s - 2 == 1 (mod 3). Thus the set {p^2} is a subset of {P_s(3) + 1}; Q.E.D. - _Ralf Steiner_, Jul 15 2018
%C For all primes p > 5, at least one polygonal number exists with P_s(k) + 1 = p when k = 3 or 4, dependent on p mod 6. - _Ralf Steiner_, Jul 16 2018
%C Numbers m such that r = (2*m/d - 2)/(d - 1) is an integer for some d, where 2 < d < m is a divisor of 2*m. If r is an integer, then m is the d-th (r+2)-gonal number. - _Jianing Song_, Mar 14 2021
%D Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.
%H Robert G. Wilson v, <a href="/A090466/b090466.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms are from T. D. Noe)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FigurateNumber.html">Figurate Number</a>
%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F Integer k is in this sequence iff A176774(k) < k. - _Max Alekseyev_, Apr 24 2018
%p isA090466 := proc(n)
%p local nsearch,ksearch;
%p for nsearch from 3 do
%p if A057145(nsearch,3) > n then
%p return false;
%p end if;
%p for ksearch from 3 do
%p if A057145(nsearch,ksearch) = n then
%p return true;
%p elif A057145(nsearch,ksearch) > n then
%p break;
%p end if;
%p end do:
%p end do:
%p end proc:
%p for n from 1 to 1000 do
%p if isA090466(n) then
%p printf("%d,",n) ;
%p end if;
%p end do: # _R. J. Mathar_, Jul 28 2016
%t Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2,{n,3,100},{k,3,40}]]],67] (* corrected by _Ant King_, Sep 19 2011 *)
%t mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* _Robert G. Wilson v_, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
%o (PARI) list(lim)=my(v=List()); lim\=1; for(n=3,sqrtint(8*lim+1)\2, for(k=3,2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ _Charles R Greathouse IV_, Jan 19 2017
%o (PARI) is(n)=for(s=3,n\3+1,ispolygonal(n,s)&&return(s)); \\ _M. F. Hasler_, Jan 19 2017
%o (PARI) isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ _Jianing Song_, Mar 14 2021
%Y Cf. A057145, A001248. Complement is A090467.
%Y Sequence A090428 (excluding 1) is a subsequence of this sequence. - _T. D. Noe_, Jun 14 2012
%K easy,nonn
%O 1,1
%A _Robert G. Wilson v_, Dec 01 2003
%E Verified by _Don Reble_, Mar 12 2006