login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090027 Number of distinct lines through the origin in 5-dimensional cube of side length n. 12

%I

%S 0,31,211,961,2851,7471,15541,31471,55651,95821,152041,239791,351331,

%T 517831,723241,1007041,1352041,1821721,2359051,3082921,3904081,

%U 4956901,6151651,7677901,9334261,11445361,13746181,16566691,19644031,23432851,27408331,32333581

%N Number of distinct lines through the origin in 5-dimensional cube of side length n.

%C Equivalently, number of lattice points where the GCD of all coordinates = 1.

%F a(n) = A090030(5, n).

%F a(n) = (n+1)^5 - 1 - Sum_{j=2..n+1} a(floor(n/j)). - _Chai Wah Wu_, Mar 30 2021

%e a(2) = 211 because the 211 points with at least one coordinate=2 all make distinct lines and the remaining 31 points and the origin are on those lines.

%t aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[5, k], {k, 0, 40}]

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A090027(n):

%o if n == 0:

%o return 0

%o c, j = 1, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c += (j2-j)*A090027(k1)

%o j, k1 = j2, n//j2

%o return (n+1)**5-c+31*(j-n-1) # _Chai Wah Wu_, Mar 30 2021

%Y Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.

%K nonn

%O 0,2

%A _Joshua Zucker_, Nov 25 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 01:59 EDT 2021. Contains 346430 sequences. (Running on oeis4.)