login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), 0<=k<=n, read by rows, defined by: Product{k=1..n, (1+x^k)^(n+1-k)} = Sum{k>=0, T(n,k)*x^k}.
0

%I #9 Feb 22 2013 14:38:53

%S 1,1,1,1,2,2,2,1,1,3,5,8,10,10,10,8,5,3,1,1,4,9,18,31,46,64,82,96,106,

%T 110,106,96,82,64,46,31,18,9,4,1,1,5,14,33,68,124,210,332,492,693,931,

%U 1196,1476,1754,2008,2220,2374,2453,2453,2374,2220,2008,1754,1476,1196

%N Triangle T(n,k), 0<=k<=n, read by rows, defined by: Product{k=1..n, (1+x^k)^(n+1-k)} = Sum{k>=0, T(n,k)*x^k}.

%F T(n, k) = Sum {a_1, a_2, ...a_n with a_1+2*a_2+...+n*a_n=k, C(n, a_1)*C(n-1, a_2)*...*C(1, a_n)} .

%F Sum_{k, k>=0} T(n, k) = 2^(n*(n+1)/2), see A006125.

%e Row n=0 : 1

%e Row n=1 : 1, 1

%e Row n=2 : 1, 2, 2, 2, 1

%e Row n=3 : 1, 3, 5, 8, 10, 10, 10, 8, 5, 3, 1

%e Row n=4 : 1, 4, 9, 18, 31, 46, 64, 82, 96, 106, 110, 106, 96, 82, 64, 46, 31, 18, 9, 4, 1

%Y Cf. A006125.

%K easy,nonn,tabf

%O 0,5

%A _Philippe Deléham_, Jan 06 2004, Oct 16 2008