Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 29 2019 16:02:13
%S 1,18,9,432,1,672,14400,243,47520,648000,27,36396,3790800,38102400,1,
%T 9765,5115888,354715200,2844979200,1107,2499552,757646784,39182330880,
%U 263363788800,54,546453,592216272,123294623040,5089348454400
%N Array used for numerators of g.f.s for column sequences of array A078741 ((3,3)-Stirling2).
%C The row length sequence for this array is A004396(n-2)=floor((2*n-3)/3), n>=3: [1,1,2,3,3,4,5,5,6,7,7,8,9,9,10,...].
%C The g.f. G(m,x) for the m-th column sequence (with leading zeros) of array A078741 is given there. The recurrence is G(m,x) = x*(3*fallfac(m-1,2)*G(m-1,x) + 3*(m-2)*G(m-2,x) + G(m-3,x))/(1-fallfac(m,3)*x), m>=4, with inputs G(1,x)=0=G(2,x) and G(3,x)=x/(1-(3*2*1)*x); where fallfac(n,m) := A008279(n,m) (falling factorials). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=3: recurrence for S_{3,3}(n,k).
%H W. Lang, <a href="/A089517/a089517.txt">First 11 rows</a>.
%F a(n, m) from: sum(a(n, m)*x^m, m=0..kmax(n)) = G(n, x)* product(1-fallfac(p, 3)*x, p=3..n)/x^ceiling(n/3), n>=3, with G(n, x) defined from the recurrence given above and kmax(n) := A004523(n-3)= floor(2*(n-3)/3) = A004396(n-3)-1.
%e [1]; [18]; [9,423]; [1,672,14400]; [243,47520,648000]; ...
%e G(4,x)/(x^2) = 18/((1-3*2*1*x)*(1-4*3*2*x)). kmax(4)=0, hence P(4,x)=a(4,0)=18; x^2 from x^ceiling(4/3).
%K nonn,easy,tabf
%O 3,2
%A _Wolfdieter Lang_, Dec 01 2003