%I
%S 2,3,7,39916801,10888869450418352160768000001,
%T 13763753091226345046315979581580902400000001,
%U 33452526613163807108170062053440751665152000000001
%N Primes of the form n! + 1.
%C Of course 2 = 0! + 1 = 1! + 1 has two such representations.
%C Prime numbers that are the sum of two factorial numbers.  _JuriStepan Gerasimov_, Nov 08 2010
%H T. D. Noe, <a href="/A088332/b088332.txt">Table of n, a(n) for n=1..11</a>
%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC2012) and another new proof</a>, arXiv preprint arXiv:1202.3670, 2012  From N. J. A. Sloane, Jun 13 2012
%e 3! + 1 = 7 is prime.
%t lst={};Do[p=n!+1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2009 *)
%o (PARI) factp1prime(n)=for(x=1,n,xf=x!+1; if(isprime(xf),print1(xf",")))
%Y Cf. A002981 (values of n).
%K nonn
%O 1,1
%A _Cino Hilliard_, Nov 06 2003
%E The next term is too large to include.
