%I #5 Mar 17 2018 04:08:50
%S -2,-2,-4,-2,-2,-4,-2,-4,-2,0,-4,-4,-4,-2,-4,-2,-2,-10,-2,-4,0,-4,-4,
%T -8,-10,-2,-4,0,-4,-2,-4,-4,-4,-2,-4,0,-4,-6,-4,0,-8,-4,-2,-2,0,-4,-4,
%U -4,-10,-2,-14,-2,0,0,-6,-4,-4,0,-10,-2,0,-4,-10,-4,-2,0,-4,-2,-2,-6,-2,-4,0,-2,-4,-4,-10,-8,-2,0,0,-8,-4,-8,-4,0,-2
%N Members of the difference sequence (A088197) of LQnR(p_n) (A088196) where it is <= 0.
%C The members of the sequence are always even (conjectured!).
%o (PARI) qnrp_d_nm(n)= {/* The difference sequence of LQnR where the sequence of the largest QnR modulo the primes is nonmonotonic */ local(k=1,m,p,fl,jj,j,v=[]); for(i=2,n,m=0; p=prime(i); jj=0; fl=2^p-1; j=2; while((j<=(p-1)/2),jj=(j^2)%p; fl-=2^jj; j++); j=p-1; while(m==0,if(bitand(2^j,fl),m=j); j--); if(m-k<=0,v=concat(v,m-k)); k=m); print(v)}
%Y Cf. A088194, A088196, A088197, A088198, A088199, A088201.
%K sign
%O 1,1
%A Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 23 2003