Proof of conjectured formula for A088041

Robert Israel

August 19, 2019

The conjecture is that for $n \ge 4$, $2^{n-2} - 1$ is the smallest integer k > 1 such that $k^4 - 1$ is divisible by the fourth power of an integer > 1.

Note that $k=2^{n-2}-1$ is a fourth root of unity mod 2^n for $n \geq 4$. Indeed, mod 2^n for $n \geq 4$ there are exactly 8 fourth roots of unity, namely 1, $2^{n-2}-1$, $2^{n-2}+1$, $2^{n-1}-1$, $2^{n-1}+1$, $3\cdot 2^{n-2}-1$, $3\cdot 2^{n-2}+1$, 2^n-1 , and the smallest of these greater than 1 is $2^{n-2}-1$.

Thus if a(n) is not $2^{n-2}-1$, it is some k with $1 < k < 2^{n-2}-1$ such that k^4-1 is divisible by p^n for some prime p > 2. We have $k^4-1=(k-1)(k+1)(k^2+1)$ and the only possible common divisor of any two of these is 2, so if k^4-1 is divisible by p^n , one of k-1, k+1 and k^2+1 is divisible by p^n . If that is k-1 or k+1, we have $k+1 \ge p^n$ so $k \ge p^n-1 > 2^{n-2}-1$. If it is k^2+1 , then $k \ge (p^n-1)^{1/2}$, and this is greater than $2^{n-2}-1$ if $p^n-1 > (2^{n-2}-1)^2=4^{n-2}-2^{n-1}+1$. That is certainly the case if p > 4.

The only remaining case is p = 3. But mod 3^n , there are only two fourth roots of unity, namely 1 and $3^n - 1$, and $3^n - 1 > 2^{n-2} - 1$. So this completes the proof of the conjecture.

Of course, $a(n) = 2^{n-2} - 1$ does satisfy the recurrence a(n) = 3a(n-1) - 2a(n-2) for $n \ge 6$, and it is easy to derive the generating function.