Proof of conjectured formula for A088041

Robert Israel

August 19, 2019

The conjecture is that for $n \geq 4,2^{n-2}-1$ is the smallest integer $k>1$ such that $k^{4}-1$ is divisible by the fourth power of an integer >1.

Note that $k=2^{n-2}-1$ is a fourth root of unity $\bmod 2^{n}$ for $n \geq 4$. Indeed, $\bmod 2^{n}$ for $n \geq 4$ there are exactly 8 fourth roots of unity, namely $1,2^{n-2}-1,2^{n-2}+1,2^{n-1}-$ $1,2^{n-1}+1,3 \cdot 2^{n-2}-1,3 \cdot 2^{n-2}+1,2^{n}-1$, and the smallest of these greater than 1 is $2^{n-2}-1$.

Thus if $a(n)$ is not $2^{n-2}-1$, it is some k with $1<k<2^{n-2}-1$ such that $k^{4}-1$ is divisible by p^{n} for some prime $p>2$. We have $k^{4}-1=(k-1)(k+1)\left(k^{2}+1\right)$ and the only possible common divisor of any two of these is 2 , so if $k^{4}-1$ is divisible by p^{n}, one of $k-1, k+1$ and $k^{2}+1$ is divisible by p^{n}. If that is $k-1$ or $k+1$, we have $k+1 \geq p^{n}$ so $k \geq p^{n}-1>2^{n-2}-1$. If it is $k^{2}+1$, then $k \geq\left(p^{n}-1\right)^{1 / 2}$, and this is greater than $2^{n-2}-1$ if $p^{n}-1>\left(2^{n-2}-1\right)^{2}=4^{n-2}-2^{n-1}+1$. That is certainly the case if $p>4$.

The only remaining case is $p=3$. But $\bmod 3^{n}$, there are only two fourth roots of unity, namely 1 and $3^{n}-1$, and $3^{n}-1>2^{n-2}-1$. So this completes the proof of the conjecture.

Of course, $a(n)=2^{n-2}-1$ does satisfy the recurrence $a(n)=3 a(n-1)-2 a(n-2)$ for $n \geq 6$, and it is easy to derive the generating function.

