login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Third column of A071223.
3

%I #18 Oct 19 2021 14:56:15

%S 2,6,24,72,172,352,646,1094,1742,2642,3852,5436,7464,10012,13162,

%T 17002,21626,27134,33632,41232,50052,60216,71854,85102,100102,117002,

%U 135956,157124,180672,206772,235602,267346,302194,340342,381992,427352,476636

%N Third column of A071223.

%H Colin Barker, <a href="/A087645/b087645.txt">Table of n, a(n) for n = 2..1000</a>

%H Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, <a href="https://arxiv.org/abs/2106.14140">Permutations of point sets in R_d</a>, arXiv:2106.14140 [math.CO], 2021.

%H T. M. Cover, <a href="http://www.jstor.org/stable/2946294">The number of linearly inducible orderings of points in d-space</a>, SIAM J. Applied Math., 15 (1967), 434-439.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = A052149(n+1) + 2.

%F a(n) = (3*n^4-10*n^3+9*n^2-2*n+24)/12. - _Vladeta Jovovic_, Oct 26 2003

%F G.f.: -2*x^2*(x^4-4*x^3+7*x^2-2*x+1) / (x-1)^5. - _Colin Barker_, Dec 06 2014

%t CoefficientList[Series[-2 x^2*(x^4 - 4 x^3 + 7 x^2 - 2 x + 1)/(x - 1)^5, {x, 0, 38}], x][[3 ;; -1]] (* _Michael De Vlieger_, Oct 19 2021 *)

%o (PARI) Vec(-2*x^2*(x^4-4*x^3+7*x^2-2*x+1)/(x-1)^5 + O(x^100)) \\ _Colin Barker_, Dec 06 2014

%Y Cf. A052149, A071223.

%K nonn,easy

%O 2,1

%A _N. J. A. Sloane_, Oct 26 2003

%E More terms from _Vladeta Jovovic_, Oct 26 2003