login
Expansion of g.f.: (1-2*x)*(1-4*x+x^2)/((1-x)*(1-3*x)*(1-4*x)).
3

%I #17 Jul 11 2023 08:17:11

%S 1,2,6,20,70,252,926,3460,13110,50252,194446,758100,2973350,11716252,

%T 46333566,183739940,730176790,2906358252,11582386286,46200404980,

%U 184414199430,736494536252,2942491360606,11759505089220,47006639297270

%N Expansion of g.f.: (1-2*x)*(1-4*x+x^2)/((1-x)*(1-3*x)*(1-4*x)).

%C Binomial transform of A087432. a(n+1) = 2*A085282(n).

%C Counts closed walks of length 2n at a vertex of the cyclic graph on 12 nodes C_12. - _Herbert Kociemba_, Jun 06 2004

%H Vincenzo Librandi, <a href="/A087433/b087433.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F G.f.: (1-2*x)*(1-4*x+x^2)/((1-x)*(1-3*x)*(1-4*x)).

%F a(n) = 0^n/6 + 1/3 + 3^n/3 + 4^n/6.

%F a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - _Wesley Ivan Hurt_, Jul 11 2023

%t CoefficientList[Series[(1-2x)(1-4x+x^2)/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* _Harvey P. Dale_, Nov 26 2014 *)

%o (Magma) [0^n/6+1/3+3^n/3+4^n/6: n in [0..30]]; // _Vincenzo Librandi_, Aug 12 2011

%Y Cf. A085282, A087432.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Sep 02 2003

%E Definition corrected by _Herbert Kociemba_, Jun 06 2004