login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Let R be the polynomial ring GF(2)[x]. Then a(n) = number of distinct products f*g with f,g in R and 0 <= deg(f),deg(g) <= n.
2

%I #10 Dec 30 2024 03:51:57

%S 7,23,79,272,991,3587,13499,50838,194251,745754,2883084,11173940,

%T 43487349,169658939,663264004,2598336785,10190703415,40038964037,

%U 157431540197,619871791795,2442107730237,9632769956279,38008189846122,150127214291450,593141915883700

%N Let R be the polynomial ring GF(2)[x]. Then a(n) = number of distinct products f*g with f,g in R and 0 <= deg(f),deg(g) <= n.

%C Either polynomial may be 0. - _Andrew Howroyd_, Jul 10 2018

%H Sean A. Irvine, <a href="/A086908/b086908.txt">Table of n, a(n) for n = 1..45</a>

%e From _Andrew Howroyd_, Jul 10 2018: (Start)

%e Case n=1: Except for x^2 + x + 1 all polynomials with degree <= 2 are represented:

%e 0 = 0*1,

%e 1 = 1*1,

%e x = 1*x,

%e x + 1 = 1*(x + 1),

%e x^2 = x*x,

%e x^2 + 1 = (x + 1)*(x + 1),

%e x^2 + x = x*(x + 1).

%e Case n=3: There are 128 polynomials with degree <= 6. From this must be subtracted those polynomials whose factorizations into irreducible polynomials have degrees in the set {(6), (5+1), (4+1+1), (2+2+2), (5), (4+1), (4)}. 48 of these exclusions include an irreducible factor with degree >= 4. The other exclusion is (x^2 + x + 1)^3 which cannot be represented as the product of two polynomials of degree <= 3. Then a(3) = 128 - 48 - 1 = 79.

%e (End)

%o (PARI) \\ here b(n) is A001037.

%o b(n)={sumdiv(n, d, moebius(d)*2^(n/d))/n}

%o PartitionProduct(p, f)={my(r=1, k=0); for(i=1, length(p), if(i==length(p) || p[i]!=p[i+1], r*=f(p[i], i-k); k=i)); r}

%o ok(p,n,r)={poldegree(Pol(prod(i=1, #p, 1 + x^p[i] + O(x*x^n)))) >= r}

%o a(n)={my(u=vector(n, i, b(i)), s=2^(n+1)); for(r=1, n, forpart(p=n+r, if(ok(p,n,r), s+=PartitionProduct(p, (t,e)->binomial(u[t]+e-1,e))), [1, n])); s} \\ _Andrew Howroyd_, Jul 10 2018

%Y Cf. A001037, A073961.

%K nonn

%O 1,1

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003

%E a(9)-a(25) from _Andrew Howroyd_, Jul 10 2018