Let $\Pi(m,n)$ be the frequency of prime multiplets $p \le n$.

 $\begin{array}{l} m=1:\ (p) \rightarrow prime \\ m=2:\ (p,\ p+2) \rightarrow twin\ prime \\ m=3:\ (p,\ p+2,\ p+6),\ type\ 1\ or\ (p,\ p+4,\ p+6),\ type\ 2 \rightarrow prime\ triplet \\ m=4:\ (p,\ p+2,\ p+6,\ p+8) \rightarrow prime\ quadruplet \\ m=5:\ (p,\ p+2,\ p+6,\ p+8,\ p+12)\ ,\ type\ 1 \\ or\ (p,\ p+4,\ p+6,\ p+10,\ p+12)\ ,\ type\ 2 \rightarrow prime\ quintuplet \\ \end{array}$

H. Hardy and J. E. Littlewood first published, in 1923, several conjectures. One of them says that $\Pi(m,n)$ is asymptotically equal to $\Pi^{*}(m,n)$ in formula (1). In the appendix I will give an elementary deduction of the formula (1) and the coefficients (2):

(1)
$$\Pi(m,n) \simeq \Pi^*(m,n) = c(m) \int_2^n \frac{dt}{(\log t)^m}$$
 with
(2) $c(1)=1, c(m) = b(m) \prod_{p>m} \left(1 - \frac{m-1}{p-1}\right) \left(1 + \frac{1}{p-1}\right)^{m-1}$ for m>1
and $b(2)=2, \ b(3)=9, \ b(4)=\frac{27}{2}, \ b(5)=(\frac{1}{4})^5 \cdot 15^4$

(3) $c(2) = 2 \prod_{k=2}^{\infty} \left(1 - \frac{1}{(p_k - 1)^2} \right) = 1.32032363$ according to Hardy and Littlewood. $c(3) = 5.71649719, \quad c(4) = 4.15118086, \quad c(5) = 20.2635899$

The table shows that $\Pi^{*}(m,n)$ is a good approximation for $\Pi(m,n)$ up to $n = 10^{9}$:

n	П (2,n)	∏ [*] (2,n)	П (3,n)	П [*] (3,n)	П(4,n)	∏ [*] (4,n)	П(5,n)	∏ [*] (5,n)
10 ⁸	440311	440368	111156	110982	4767	4735	1383	1422
2·10 ⁸	813370	813779	196836	196975	8096	8057	2264	2285
3.10 ⁸	1166479	1167169	275821	276136	10972	11031	3002	3036
4.10 ⁸	1507732	1508435	350443	351257	13712	13804	3670	3724
5.10 ⁸	1840169	1841093	422440	423553	16330	16440	4309	4370
6.10 ⁸	2166300	2167124	492692	493699	18838	18971	4938	4984
7.10 ⁸	2486867	2487794	560968	562122	21274	21420	5540	5573
8-10 ⁸	2802750	2803980	628138	629114	23659	23800	6126	6142
9.10 ⁸	3115261	3116322	694355	694888	26081	26123	6700	6693
10 ⁹	3424505	3425308	759256	759606	28387	28397	7221	7230

The formulas can be based on a stochastic conjecture, see (4.3):

- (4.1) The formula is proven for m=1: The asymptotic density of primes is $f(n)=1/\log(n)$.
- (4.2) A random variable r(n) taking the value 1 with this probability (and 0 else) creates the same asymptotic distribution of the cumulated variable (expected value) as another variable q(n) with q(n)= 1 / 0 if n is prime / not prime. By using a sieve and so excluding as many non-primes as possible we can calculate the probability that a pair (n,n+2) or another multiplet is randomly selected.
- (4.3) The conjecture is that we can re-interpret this probability density as a "true" density and so find the formulas above for the distribution of prime multiplets.

Moreover, we can compare the difference $s = \Pi(m,n) - \Pi^{*}(m,n)$ with the standard deviation $\sigma = \sqrt{\Pi^{*}(m,n)}$ (because of f(n)<<1).

Visualization of the deviation of $\Pi(m,n)$ from $\Pi^{*}(m,n)$: (y-axis: unit σ x-axis: $n \le 10^{9}$)

Appendix: Deduction of the formula (1) and the coefficients (2):

k-primes

Let $p_1=2$, $p_2=3$, ... the sequence of primes. A number x which is prime to any $p_j \le p_k$ will be called a k-prime. x will be also called a (m,k)-multiplet for m>1 :

m=2: k-twin, if x and x+2 are k-primes

m=3: k-triplet, if x, x+2 (4) and x+6 are k-primes, type 1 (2)

m=4: k-quadruplet, if x, x+2, x+6 and x+8 are k-primes

m=5: k-quintuplet, if x, x+2 (4), x+6, x+8 (10) and x+12 are k-primes, type 1 (2) Note: k-triplets and k-quintuplets of type 2 are included later, see (A6).

Let Q(m,k), k>1, be the sequence of (m,k)-multiplets.

Examples for k≤3:

(A1) Q(1,1)= (3,5,7,9,11,..), odd numbers.

Removing the multiples of p₂=3 we obtain

(A2)Q(1,2)= (5,7,11,13,17,19,23,25,29,31,35, ..)

This sequence can be split up into two arithmetic progressions (5,11,17,23, ..) and (7,13,19,25, ..) with the difference $d_2=2\cdot 3=6$.

Each of them can be split up into 5 subsequences (difference $d_3 = 2 \cdot 3 \cdot 5 = 30$): By removing the multiples of $p_3=5$, eight progressions remain in Q(1,3), three (11,...17,...29,...) in Q(2,3), two (11,...17,...) in Q(3,3) and one (11,...) in Q(4,3) as well as in Q(5,3). See right table.

Q(m,k) is the union of q(m,k) arithmetic progressions with the

difference $d_k = \prod_{j=1}^{\kappa} p_j$. Here are some values of q(m,k): (A3) q(1,1)=1, q(1,2)=2, q(1,3)=8, q(2,2)=q(3,2)=q(4,2)=q(5,3)=1

Recurrence for q(m,k):

m=1

Any arithmetic progression in Q(1,k-1) with the difference d_{k-1} can be split up into p_k progressions with the difference $d_k = p_k \cdot d_{k-1}$. They belong to different residue classes (mod p_k) because p_k and d_{k-1} are relatively prime. By removing the progression representing the class 0 (mod p_k) in Q(1,k) we erase one k-prime and obtain $q(1,k) = q(1,k-1) \cdot (p_k-1)$.

m=2

Each (k-1)-twin belongs to a pair of progressions in Q(2,k-1). Executing the step $k-1 \rightarrow k$ we remove the 2 subsequences with 0 (mod p_k). This way two k-twins are erased with the result: $q(2,k) = q(2,k-1) \cdot (p_k-2)$.

m≤5 (A4) Generalization: $q(m,k) = q(m,k-1) \cdot (p_k-m)$.

There seems to be a problem with m=3. K-triples do overlap when they are part of a quintuple. Then only 5 (instead of $2 \cdot 3=6$) subsequences with 0 (mod p_k) are removed. But with the subsequence belonging to the overlapping number two k-triples are erased so that recurrence (A4) is correct for m=3. It also holds for m=5 in the case of overlapping quintuples.

The recurrence (A4) is valid for p_k >m, i.e. k>k_m with $k_1 = 1$, $k_2 = k_3 = k_4 = 2$, $k_5 = 3$

Recurrence for the density $\delta(m,k)$ of Q(m,k):

Generally: The density of a sequence, being the union of n (n≤d) arithmetic progressions with the difference d, is $^{n}/_{d}$.

$$\begin{split} \delta(\mathsf{m},\mathsf{k}) &= \frac{\mathsf{q}(\mathsf{m},\mathsf{k})}{\mathsf{d}_{\mathsf{k}}} = \frac{\mathsf{q}(\mathsf{m},\mathsf{k}-1)(\mathsf{p}_{\mathsf{k}}-\mathsf{m})}{\mathsf{p}_{\mathsf{k}} \cdot \mathsf{d}_{\mathsf{k}-1}} = \delta(\mathsf{m},\mathsf{k}-1)\frac{\mathsf{p}_{\mathsf{k}}-\mathsf{m}}{\mathsf{p}_{\mathsf{k}}} \\ \\ \hline \mathsf{Explicit version: (A5) } \delta(\mathsf{m},\mathsf{k}) &= \delta(\mathsf{m},\mathsf{k}_{\mathsf{m}})\prod_{\mathsf{m} < \mathsf{p} \leq \mathsf{p}_{\mathsf{k}}} \frac{\mathsf{p}-\mathsf{m}}{\mathsf{p}}, \mathsf{p prime} \end{split}$$

Inclusion of k-triples and k-quintuples of type 2.

Their number is the same as of type 1. So we replace q(m,k) by 2q(m,k) for m=3, 5. This leads to the basic densities $\delta(m, k_m)$:

(A6)
$$\delta(1,1) = \frac{1}{2}, \ \delta(2,2) = \frac{1}{6}, \ \delta(3,2) = \frac{2}{6}, \ \delta(4,2) = \frac{1}{6}, \ \delta(5,3) = \frac{2}{30}$$

and $\delta(1,2) = \frac{2}{6}, \ \delta(1,3) = \frac{8}{30}$

5	35	65	
7	37	67	
11	41	71	
13	43	73	
17	47	77	
19	49	79	
23	53	83	
25	55	85	
29	59	89	
31	61	91	

A stochastic approach to a conjecture

Let u(m,n) be the asymptotic density of prime multiplets. For primes there are well known formulas:

(A7) u(1,n)=
$$\frac{1}{\log n}$$
 and $\Pi(1,n) \simeq \int_{2}^{n} \frac{dt}{\log t} = \text{Li}(n).$

 $w(m,k,n):=\frac{u(m,n)}{\delta(m,k)}$ can be thought of as the probability that a randomly selected (m,k)-multiplet is a

prime multiplet.

<u>Conjecture</u>: The events "n is a prime" and "n+x is a prime" are unrelated for any n, n+x \in Q(1,k). Then the probability that both events occur is, w(1,k,n)· w(1,k,n+x) or, for x=2 and large n: w(2,k,n) = w(1,k,n)² or generally for multiplets: (A8) w(m,k,n) = w(1,k,n)^m

$$\frac{u(m,n)}{\delta(m,k)} = \left(\frac{u(1,n)}{\delta(1,k)}\right)^m \to u(m,n) = \frac{\alpha(m,k)}{\log^m n} \text{ with } \alpha(m,k) = \frac{\delta(m,k)}{\delta(1,k)^m}$$

The concentration of primes in Q(m,k) increases with k, and so the transition $k \rightarrow \infty$ is reasonable. With c(m) := $\lim_{k \rightarrow \infty} \alpha(m,k)$ the conjecture is

$(\Delta Q) u(m n) -$	c(m)	
(A3) u(III,II)=	log ^m n	

Coefficients used in (1) and (2)

$$\begin{aligned} \alpha(m,k) &= \frac{\delta(m,k)}{\delta(1,k)^{m}} = b(m) \prod_{m
with $b(m) &= \frac{\delta(m,k_{m})}{\delta(1,k_{m})^{m}}$ (for these special values see (A6)).
Result: $b(2) &= \frac{\delta(2,1)}{\delta(1,1)^{2}} = 2, \ b(3) &= \frac{\delta(3,2)}{\delta(1,2)^{3}} = 9, \ b(4) &= \frac{\delta(4,2)}{\delta(1,2)^{4}} = \frac{27}{2}, \ b(5) &= \frac{\delta(5,3)}{\delta(1,3)^{5}} = \frac{1}{4} \left(\frac{15}{4}\right)^{4} \end{aligned}$$$