login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086058 Decimal expansion of conjectured value of delta related to the Masser-Gramain constant. 5

%I

%S 1,8,2,2,8,2,5,2,4,9,6,7,8,8,4,7,0,3,2,9,9,5,3,2,8,7,1,6,2,6,1,4,6,4,

%T 9,4,9,4,7,5,6,9,3,1,1,8,8,9,4,8,5,0,2,1,8,3,9,3,8,1,5,6,1,3,0,3,7,0,

%U 9,0,9,5,6,4,4,6,4,0,1,6,6,7,5,7,2,1,9,5,3,2,5,7,3,2,3,4,4,5,3,2,4,7

%N Decimal expansion of conjectured value of delta related to the Masser-Gramain constant.

%C Numerical work by Melquiond et al. (see reference) disproves Gramain’s conjecture, correct bounds for the Masser-Gramain constant delta are: 1.819776 < delta < 1.819833. - _Vaclav Kotesovec_, Apr 27 2015

%H Guillaume Melquiond, W. Georg Nowak, Paul Zimmermann, <a href="http://www.ams.org/journals/mcom/2013-82-282/S0025-5718-2012-02635-4/S0025-5718-2012-02635-4.pdf">Numerical approximation of the Masser-Gramain constant to four decimal places</a>, Mathematics of Computation, Volume 82, Number 282, April 2013, Pages 1235-1246

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Masser-GramainConstant.html">Masser-Gramain Constant</a>

%F Equals 1 + A241017.

%F Equals 1 + A062089/Pi.

%e 1.82282524967884703299532871626146494947569311889485021839381561303709...

%t RealDigits[ 1 + 2*EulerGamma + 2*Log[2] + 3*Log[Pi] - 4*Log[Gamma[1/4]], 10, 102] // First (* _Jean-François Alcover_, Feb 07 2013, after _Eric W. Weisstein_ *)

%o (PARI) 1+2*Euler+2*log(2)+3*log(Pi)-4*lngamma(1/4) \\ _Charles R Greathouse IV_, Dec 08 2014

%K nonn,cons

%O 1,2

%A _Eric W. Weisstein_, Jul 07 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 05:43 EDT 2019. Contains 328026 sequences. (Running on oeis4.)