login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085116 Denominator of G(n)=sum(k=1,n,1/2^k/2*sum(j=0,k-1,1/binomial(2^(k-j)+j,j))). 1

%I

%S 4,12,480,2880,171360,15079680,2979744768,256258050048,

%T 2206253681888256,32081134788337130496,3025251010540191405772800,

%U 60806680954426264344203059200,22247876027117358528051602802320179200

%N Denominator of G(n)=sum(k=1,n,1/2^k/2*sum(j=0,k-1,1/binomial(2^(k-j)+j,j))).

%D David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, 2000.

%H M. Beeler, R. W. Gosper and R. Schroeppel, <a href="https://dspace.mit.edu/handle/1721.1/6086">HAKMEM</a>, Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972, Item 120, page 55. Also <a href="http://www.inwap.com/pdp10/hbaker/hakmem/series.html#item120">HTML transcription</a>.

%F lim n-->oo G(n) = Gamma constant = 0.5772....

%o (PARI) a(n)=denominator(sum(k=1,n,1/2^k/2*sum(j=0,k-1,1/binomial(2^(k-j)+j,j))))

%Y Cf. A085115 (numerators).

%K frac,nonn

%O 0,1

%A _Benoit Cloitre_, Aug 10 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 15:42 EST 2022. Contains 350472 sequences. (Running on oeis4.)