|
|
A084670
|
|
Numbers k such that concatenation of prime(k) and k is prime.
|
|
2
|
|
|
3, 9, 19, 21, 37, 63, 77, 81, 87, 107, 121, 133, 177, 201, 211, 213, 217, 281, 293, 303, 321, 327, 329, 333, 351, 391, 393, 439, 481, 503, 507, 519, 543, 547, 551, 561, 579, 581, 599, 621, 639, 657, 663, 667, 711, 721, 727, 743, 793, 813, 819, 827, 829, 831, 837
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
9 is a term because prime(9) = 23 and concatenation of 23 and 9 is prime
|
|
MATHEMATICA
|
Select[Range[1000], PrimeQ[Prime[#]10^IntegerLength[#]+#]&] (* Harvey P. Dale, Apr 09 2022 *)
|
|
PROG
|
(PARI) is(k) = ispseudoprime(eval(Str(prime(k), k))); \\ Jinyuan Wang, Apr 10 2020
(Python)
from sympy import isprime, prime
def aupto(lim):
return [k for k in range(1, lim+1) if isprime(int(str(prime(k))+str(k)))]
print(aupto(837)) # Michael S. Branicky, Mar 09 2021
|
|
CROSSREFS
|
Cf. A075110, A084669.
Sequence in context: A253219 A097267 A043097 * A002091 A056259 A056682
Adjacent sequences: A084667 A084668 A084669 * A084671 A084672 A084673
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Zak Seidov, Jun 29 2003
|
|
EXTENSIONS
|
More terms from Jinyuan Wang, Apr 10 2020
|
|
STATUS
|
approved
|
|
|
|